March  2020, 25(3): 1109-1128. doi: 10.3934/dcdsb.2019211

The fast signal diffusion limit in nonlinear chemotaxis systems

Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany

Received  November 2018 Revised  May 2019 Published  September 2019

For
$ n\geq2 $
let
$ \mathit{\Omega }\subset {\mathbb{R}}^n $
be a bounded domain with smooth boundary as well as some nonnegative functions
$ 0\not \equiv u_0\in W^{1, \infty}(\mathit{\Omega }) $
and
$ v_0\in W^{1, \infty}(\mathit{\Omega }) $
. With
$ \varepsilon\in(0, 1) $
we want to know in which sense (if any!) solutions to the parabolic-parabolic system
$ \begin{equation*} \begin{cases} u_t = \nabla\cdot((u+1)^{m-1}\nabla u)-\nabla \cdot(u\nabla v) \;\;\; & \text{in} \ \mathit{\Omega }\times\left(0, \infty \right), \\ \varepsilon v_t = \mathit{\Delta } v -v+u & \text{in} \ \mathit{\Omega }\times\left(0, \infty \right), \\ \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0 & \text{on} \ \partial\mathit{\Omega }\times\left(0, \infty \right), \\ u(\cdot, 0) = u_0, \ v(\cdot, 0) = v_0 & \text{in} \ \mathit{\Omega } \end{cases} \end{equation*} $
converge to those of the system where
$ \varepsilon = 0 $
and where the initial condition for
$ v $
has been removed. We will see in our theorem that indeed the solutions of these systems converge in a meaningful way if
$ m>1+\frac{n-2}{n} $
without the need for further conditions, e. g. on the size of
$ \left\|{{u_0}}\right\|_{L^p(\mathit{\Omega })} $
for some
$ p\in[1, \infty] $
.
Citation: Marcel Freitag. The fast signal diffusion limit in nonlinear chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1109-1128. doi: 10.3934/dcdsb.2019211
References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[2]

M. Freitag, Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems, Journal of Mathematical Analysis and Applications, 463 (2018), 964-988.  doi: 10.1016/j.jmaa.2018.03.052.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[4]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (1997), 633–683.  Google Scholar

[5]

W. Jäger and S. Luckhaus, On explosions to solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theoret. Biol., 26 (1970), 399–415 doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI., 1968.  Google Scholar

[8]

J. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2d Keller-Segel equations, Mathematics of Computation, 87 (2018), 1165-1189.  doi: 10.1090/mcom/3250.  Google Scholar

[9]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[10]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic KellerSegel system, J. Math. Pures Appl. (9), 100 (2013), 748–767. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[11]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.   Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.   Google Scholar

[13]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.  doi: 10.32917/hmj/1206124609.  Google Scholar

[14]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems, Colloq. Math., 111 (2008), 11-34.  doi: 10.4064/cm111-1-2.  Google Scholar

[15]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Eq., 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[16]

T. Senba, Type ii blowup of solutions to a simplified Keller-Segel system in two dimensions, Nonlinear Anal., 66 (2007), 1817-1839.  doi: 10.1016/j.na.2006.02.027.  Google Scholar

[17]

Ph. Souplet and M. Winkler, Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≥ 3, M. Commun. Math. Phys., 367 (2019), 665-681.  doi: 10.1007/s00220-018-3238-1.  Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[19]

T. Suzuki, Exclusion of boundary blowup for 2d chemotaxis system provided with Dirichlet boundary condition for the poisson part, J. Math. Pures Appl., 100 (2013), 347-367.  doi: 10.1016/j.matpur.2013.01.004.  Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[21]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Preprint, 2018, arXiv: 1805.05263. Google Scholar

[22]

M. Winkler, Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, preprint. Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system., Journal de Mathématiques Pures et Appliquees, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar

show all references

References:
[1]

P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743.   Google Scholar

[2]

M. Freitag, Blow-up profiles and refined extensibility criteria in quasilinear Keller-Segel systems, Journal of Mathematical Analysis and Applications, 463 (2018), 964-988.  doi: 10.1016/j.jmaa.2018.03.052.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[4]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (1997), 633–683.  Google Scholar

[5]

W. Jäger and S. Luckhaus, On explosions to solutions to a system of partial differential equations modelling chemotaxis, Trans. Am. Math. Soc., 329 (1992), 819-824.  doi: 10.1090/S0002-9947-1992-1046835-6.  Google Scholar

[6]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. theoret. Biol., 26 (1970), 399–415 doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[7]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasi-linear Equations of Parabolic Type, Amer. math. Soc., Providence RI., 1968.  Google Scholar

[8]

J. LiuL. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2d Keller-Segel equations, Mathematics of Computation, 87 (2018), 1165-1189.  doi: 10.1090/mcom/3250.  Google Scholar

[9]

N. Mizoguchi and Ph. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Annales de l'Institut Henri Poincaré, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.  Google Scholar

[10]

N. Mizoguchi and M. Winkler, Finite-time blow-up in the two-dimensional parabolic KellerSegel system, J. Math. Pures Appl. (9), 100 (2013), 748–767. doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[11]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.   Google Scholar

[12]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.   Google Scholar

[13]

T. NagaiT. Senba and T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J., 30 (2000), 463-497.  doi: 10.32917/hmj/1206124609.  Google Scholar

[14]

Y. Naito and T. Suzuki, Self-similarity in chemotaxis systems, Colloq. Math., 111 (2008), 11-34.  doi: 10.4064/cm111-1-2.  Google Scholar

[15]

M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Eq., 103 (1993), 146-178.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[16]

T. Senba, Type ii blowup of solutions to a simplified Keller-Segel system in two dimensions, Nonlinear Anal., 66 (2007), 1817-1839.  doi: 10.1016/j.na.2006.02.027.  Google Scholar

[17]

Ph. Souplet and M. Winkler, Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≥ 3, M. Commun. Math. Phys., 367 (2019), 665-681.  doi: 10.1007/s00220-018-3238-1.  Google Scholar

[18]

T. Suzuki, Free Energy and Self-Interacting Particles, Birkhäuser, Boston, 2005. doi: 10.1007/0-8176-4436-9.  Google Scholar

[19]

T. Suzuki, Exclusion of boundary blowup for 2d chemotaxis system provided with Dirichlet boundary condition for the poisson part, J. Math. Pures Appl., 100 (2013), 347-367.  doi: 10.1016/j.matpur.2013.01.004.  Google Scholar

[20]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, Journal of Differential Equations, 252 (2012), 692-715.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[21]

Y. Wang, M. Winkler and Z. Xiang, The fast signal diffusion limit in Keller-Segel(-fluid) systems, Preprint, 2018, arXiv: 1805.05263. Google Scholar

[22]

M. Winkler, Blow-up profiles and life beyond blow-up in the fully parabolic Keller-Segel system, preprint. Google Scholar

[23]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, Journal of Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[24]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system., Journal de Mathématiques Pures et Appliquees, 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.  Google Scholar

[25] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9781139171755.  Google Scholar
[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[20]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (105)
  • HTML views (243)
  • Cited by (0)

Other articles
by authors

[Back to Top]