• Previous Article
    Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion
  • DCDS-B Home
  • This Issue
  • Next Article
    The fast signal diffusion limit in nonlinear chemotaxis systems
March  2020, 25(3): 1129-1139. doi: 10.3934/dcdsb.2019212

Global asymptotic stability of nonconvex sweeping processes

Department of Mathematical Sciences, University of Texas at Dallas, 75080 Richardson, USA

* Corresponding author: Oleg Makarenkov

Received  November 2018 Revised  May 2019 Published  March 2020 Early access  September 2019

Building upon the technique that we developed earlier for perturbed sweeping processes with convex moving constraints and monotone vector fields (Kamenskii et al, Nonlinear Anal. Hybrid Syst. 30, 2018), the present paper establishes the conditions for global asymptotic stability of global and periodic solutions to perturbed sweeping processes with prox-regular moving constraints. Our conclusion can be formulated as follows: closer the constraint to a convex one, weaker monotonicity is required to keep the sweeping process globally asymptotically stable. We explain why the proposed technique is not capable to prove global asymptotic stability of a periodic regime in a crowd motion model (Cao-Mordukhovich, DCDS-B 22, 2017). We introduce and analyze a toy model which clarifies the extent of applicability of our result.

Citation: Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212
References:
[1]

L. Adam and J. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738.  doi: 10.3934/dcdsb.2014.19.2709.

[2]

J. Bastien, F. Bernardin and C.-H. Lamarque, Non Smooth Deterministic or Stochastic Discrete, Dynamical Systems: Applications to Models with Friction or Impact, Wiley, 2013,512 pp.

[3]

H. Benabdellah, Existence of solutions to the nonconvex sweeping process, Journal of Differential Equations, 164 (2000), 286-295.  doi: 10.1006/jdeq.1999.3756.

[4]

B. Brogliato, Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued mappings, Systems & Control Letters, 51 (2004), 343-353.  doi: 10.1016/j.sysconle.2003.09.007.

[5]

B. Brogliato and W. M. H. Heemels, Observer design for Lur'e systems with multivalued mappings: A passivity approach, IEEE Transactions on Automatic Control, 54 (2009), 1996-2001.  doi: 10.1109/TAC.2009.2023968.

[6]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Cont. Dyn. Syst., Ser B., 22 (2017), 267-306.  doi: 10.3934/dcdsb.2017014.

[7]

T. H. Cao and B. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, Journal of Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.

[8]

C. Castaing and M. D. Monteiro Marques, BV periodic solutions of an evolution problem associated with continuous moving convex sets, Set-Valued Analysis, 3 (1995), 381-399.  doi: 10.1007/BF01026248.

[9]

G. Colombo and V. V. Goncharov, The sweeping processes without convexity, Set-Valued Analysis, 7 (1999), 357-374.  doi: 10.1023/A:1008774529556.

[10]

G. Colombo and M. D. Monteiro Marques, Sweeping by a continuous prox-regular set, Journal of Differential Equations, 187 (2003), 46-62.  doi: 10.1016/S0022-0396(02)00021-9.

[11]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, Journal of Differential Equations, 226 (2006), 135-179.  doi: 10.1016/j.jde.2005.12.005.

[12]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Mathematical Programming, 104 (2005), 347-373.  doi: 10.1007/s10107-005-0619-y.

[13]

C. O. Frederick and P. J. Armstrong, Convergent internal stresses and steady cyclic states of stress, The Journal of Strain Analysis for Engineering Design, 1 (1966), 154-159.  doi: 10.1243/03093247V012154.

[14]

M. KamenskiiO. MakarenkovL. N. Wadippuli and P. R. de Fitte, Global stability of almost periodic solutions of monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Analysis: Hybrid Systems, 30 (2018), 213-224.  doi: 10.1016/j.nahs.2018.05.007.

[15]

M. Kamenskii and O. Makarenkov, On the response of autonomous sweeping processes to periodic perturbations, Set-Valued and Variational Analysis, 24 (2016), 551-563.  doi: 10.1007/s11228-015-0348-1.

[16]

P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996.

[17]

M. Kunze, Periodic solutions of non-linear kinematic hardening models, Math. Methods Appl. Sci., 22 (1999), 515-529.  doi: 10.1002/(SICI)1099-1476(199904)22:6<515::AID-MMA48>3.0.CO;2-S.

[18]

R. I. Leine and N. Van de Wouw, Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lecture Notes in Applied and Computational Mechanics, 36. Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-76975-0.

[19] E. H. Lockwood, A Book of Curves, Cambridge University Press, New York, 1961. 
[20]

B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168.  doi: 10.1051/m2an/2010035.

[21]

B. S. Mordukhovich, Variational Analysis and Applications, Springer, 2018. doi: 10.1007/978-3-319-92775-6.

[22]

R. A. PoliquinR. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Transactions of American Mathematical Society, 352 (2000), 5231-5249.  doi: 10.1090/S0002-9947-00-02550-2.

[23]

C. Polizzotto, Variational methods for the steady state response of elasticplastic solids subjected to cyclic loads, International Journal of Solids and Structures, 40 (2003), 2673-2697.  doi: 10.1016/S0020-7683(03)00093-3.

[24]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[25]

W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1976.

[26]

A. TanwaniB. Brogliato and C. Prieur, Stability and observer design for Lur'e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps, SIAM Journal on Control and Optimization, 52 (2014), 3639-3672.  doi: 10.1137/120902252.

[27]

L. Thibault, Sweeping process with regular and nonregular sets, Journal of Differential Equations, 193 (2003), 1-26.  doi: 10.1016/S0022-0396(03)00129-3.

[28]

Y. V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities, "Nauka i Tekhnika", Minsk, 1986.

[29]

V. A. Zorich, Mathematical Analysis. II, Translated from the 2002 fourth Russian edition by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2004.

[30]

Z. ZhuH. Leung and Z. Ding, Optimal synchronization of chaotic systems in noise, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 1320-1329. 

show all references

References:
[1]

L. Adam and J. Outrata, On optimal control of a sweeping process coupled with an ordinary differential equation, Discrete Contin. Dyn. Syst.–Ser. B, 19 (2014), 2709-2738.  doi: 10.3934/dcdsb.2014.19.2709.

[2]

J. Bastien, F. Bernardin and C.-H. Lamarque, Non Smooth Deterministic or Stochastic Discrete, Dynamical Systems: Applications to Models with Friction or Impact, Wiley, 2013,512 pp.

[3]

H. Benabdellah, Existence of solutions to the nonconvex sweeping process, Journal of Differential Equations, 164 (2000), 286-295.  doi: 10.1006/jdeq.1999.3756.

[4]

B. Brogliato, Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued mappings, Systems & Control Letters, 51 (2004), 343-353.  doi: 10.1016/j.sysconle.2003.09.007.

[5]

B. Brogliato and W. M. H. Heemels, Observer design for Lur'e systems with multivalued mappings: A passivity approach, IEEE Transactions on Automatic Control, 54 (2009), 1996-2001.  doi: 10.1109/TAC.2009.2023968.

[6]

T. H. Cao and B. S. Mordukhovich, Optimality conditions for a controlled sweeping process with applications to the crowd motion model, Discrete Cont. Dyn. Syst., Ser B., 22 (2017), 267-306.  doi: 10.3934/dcdsb.2017014.

[7]

T. H. Cao and B. Mordukhovich, Optimal control of a nonconvex perturbed sweeping process, Journal of Differential Equations, 266 (2019), 1003-1050.  doi: 10.1016/j.jde.2018.07.066.

[8]

C. Castaing and M. D. Monteiro Marques, BV periodic solutions of an evolution problem associated with continuous moving convex sets, Set-Valued Analysis, 3 (1995), 381-399.  doi: 10.1007/BF01026248.

[9]

G. Colombo and V. V. Goncharov, The sweeping processes without convexity, Set-Valued Analysis, 7 (1999), 357-374.  doi: 10.1023/A:1008774529556.

[10]

G. Colombo and M. D. Monteiro Marques, Sweeping by a continuous prox-regular set, Journal of Differential Equations, 187 (2003), 46-62.  doi: 10.1016/S0022-0396(02)00021-9.

[11]

J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, Journal of Differential Equations, 226 (2006), 135-179.  doi: 10.1016/j.jde.2005.12.005.

[12]

J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Mathematical Programming, 104 (2005), 347-373.  doi: 10.1007/s10107-005-0619-y.

[13]

C. O. Frederick and P. J. Armstrong, Convergent internal stresses and steady cyclic states of stress, The Journal of Strain Analysis for Engineering Design, 1 (1966), 154-159.  doi: 10.1243/03093247V012154.

[14]

M. KamenskiiO. MakarenkovL. N. Wadippuli and P. R. de Fitte, Global stability of almost periodic solutions of monotone sweeping processes and their response to non-monotone perturbations, Nonlinear Analysis: Hybrid Systems, 30 (2018), 213-224.  doi: 10.1016/j.nahs.2018.05.007.

[15]

M. Kamenskii and O. Makarenkov, On the response of autonomous sweeping processes to periodic perturbations, Set-Valued and Variational Analysis, 24 (2016), 551-563.  doi: 10.1007/s11228-015-0348-1.

[16]

P. Krejci, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gattotoscho, 1996.

[17]

M. Kunze, Periodic solutions of non-linear kinematic hardening models, Math. Methods Appl. Sci., 22 (1999), 515-529.  doi: 10.1002/(SICI)1099-1476(199904)22:6<515::AID-MMA48>3.0.CO;2-S.

[18]

R. I. Leine and N. Van de Wouw, Stability and Convergence of Mechanical Systems with Unilateral Constraints, Lecture Notes in Applied and Computational Mechanics, 36. Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-76975-0.

[19] E. H. Lockwood, A Book of Curves, Cambridge University Press, New York, 1961. 
[20]

B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM: Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168.  doi: 10.1051/m2an/2010035.

[21]

B. S. Mordukhovich, Variational Analysis and Applications, Springer, 2018. doi: 10.1007/978-3-319-92775-6.

[22]

R. A. PoliquinR. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Transactions of American Mathematical Society, 352 (2000), 5231-5249.  doi: 10.1090/S0002-9947-00-02550-2.

[23]

C. Polizzotto, Variational methods for the steady state response of elasticplastic solids subjected to cyclic loads, International Journal of Solids and Structures, 40 (2003), 2673-2697.  doi: 10.1016/S0020-7683(03)00093-3.

[24]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998. doi: 10.1007/978-3-642-02431-3.

[25]

W. Rudin, Principles of Mathematical Analysis, McGraw-hill New York, 1976.

[26]

A. TanwaniB. Brogliato and C. Prieur, Stability and observer design for Lur'e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps, SIAM Journal on Control and Optimization, 52 (2014), 3639-3672.  doi: 10.1137/120902252.

[27]

L. Thibault, Sweeping process with regular and nonregular sets, Journal of Differential Equations, 193 (2003), 1-26.  doi: 10.1016/S0022-0396(03)00129-3.

[28]

Y. V. Trubnikov and A. I. Perov, Differential Equations with Monotone Nonlinearities, "Nauka i Tekhnika", Minsk, 1986.

[29]

V. A. Zorich, Mathematical Analysis. II, Translated from the 2002 fourth Russian edition by Roger Cooke, Universitext, Springer-Verlag, Berlin, 2004.

[30]

Z. ZhuH. Leung and Z. Ding, Optimal synchronization of chaotic systems in noise, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46 (1999), 1320-1329. 

Figure 1.  Illustrations of the notations of the example. The closed ball centered at $ (-1.5, 0) $ is $ \bar B_1 $ and the white ellipses are the graphs of $ S(t) $ for different values of the argument. The arrows is the vector field of $ \dot{x} = -\alpha x $
Figure 2.  The parameters $ \phi_0 $ and $ \phi_*. $
[1]

José A. Carrillo, Dejan Slepčev, Lijiang Wu. Nonlocal-interaction equations on uniformly prox-regular sets. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1209-1247. doi: 10.3934/dcds.2016.36.1209

[2]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations and Control Theory, 2022, 11 (2) : 537-557. doi: 10.3934/eect.2021012

[3]

Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041

[4]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[5]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[6]

Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to two-dimensional thermoviscoelasticity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1009-1028. doi: 10.3934/cpaa.2016.15.1009

[7]

Giovanni Colombo, Paolo Gidoni, Emilio Vilches. Stabilization of periodic sweeping processes and asymptotic average velocity for soft locomotors with dry friction. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 737-757. doi: 10.3934/dcds.2021135

[8]

Dalila Azzam-Laouir, Fatiha Selamnia. On state-dependent sweeping process in Banach spaces. Evolution Equations and Control Theory, 2018, 7 (2) : 183-196. doi: 10.3934/eect.2018009

[9]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026

[10]

Ahmad Al-Salman, Ziyad AlSharawi, Sadok Kallel. Extension, embedding and global stability in two dimensional monotone maps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4257-4276. doi: 10.3934/dcdsb.2020096

[11]

Je-Chiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 601-623. doi: 10.3934/dcds.2008.21.601

[12]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[13]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[14]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[15]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control and Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[16]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[17]

Tan H. Cao, Boris S. Mordukhovich. Optimal control of a perturbed sweeping process via discrete approximations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3331-3358. doi: 10.3934/dcdsb.2016100

[18]

Tan H. Cao, Boris S. Mordukhovich. Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 267-306. doi: 10.3934/dcdsb.2017014

[19]

Doria Affane, Meriem Aissous, Mustapha Fateh Yarou. Almost mixed semi-continuous perturbation of Moreau's sweeping process. Evolution Equations and Control Theory, 2020, 9 (1) : 27-38. doi: 10.3934/eect.2020015

[20]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (198)
  • HTML views (289)
  • Cited by (0)

[Back to Top]