March  2020, 25(3): 1141-1158. doi: 10.3934/dcdsb.2019213

Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion

1. 

School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

2. 

Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan

3. 

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, 710072, China

4. 

School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, China

* Corresponding author: Yong Xu

Received  November 2018 Revised  February 2019 Published  September 2019

Fund Project: The research of B. Pei was partially supported by the NSF of China (11802216), the China Postdoctoral Science Foundation (2019M651334) and JSPS KAKENHI Grant Number JP18F18314 (Grant-in-Aid for JSPS Fellows). The research of Y. Xu was partially supported by the NSF of China (11702216), Shaanxi Province Project for Distinguished Young Scholars and the Fundamental Research Funds for the Central Universities. B. Pei would like to thank JSPS for Postdoctoral Fellowships for Research in Japan (Standard).

In this paper, we focus on fast-slow stochastic partial differential equations in which the slow variable is driven by a fractional Brownian motion and the fast variable is driven by an additive Brownian motion. We establish an averaging principle in which the fast-varying diffusion process will be averaged out with respect to its stationary measure in the limit process. It is shown that the slow-varying process $ L^{p}(p \geq 2) $ converges to the solution of the corresponding averaging equation. To reduce the complexity, one can concentrate on the limit process instead of studying the original full fast-slow system.

Citation: Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213
References:
[1]

E. AlòsO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 29 (1999), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[2]

J. BaoG. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by alpha-stable noise: averaging principles, Bernoulli, 23 (2017), 645-669.  doi: 10.3150/14-BEJ677.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by α-stable processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17 (2014), 1450031, 16pp. doi: 10.1142/S0219025714500313.  Google Scholar

[4]

P. Bezandry, Existence of almost periodic solutions for semilinear stochastic evolution equations driven by fractional Brownian motion, Electronic Journal of Differential Equations, 156 (2012), 1-21.   Google Scholar

[5]

C. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Processes and their Applications, 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.  Google Scholar

[6]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Averaging principle for a class of stochastic reaction–diffusion equations, Probability Theory and Related Fields, 144 (2009), 137-177.  doi: 10.1007/s00440-008-0144-z.  Google Scholar

[8]

P. Chow, Stochastic Partial Differential Equations, Second edition. Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.  doi: 10.1515/ans-2005-0402.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[11]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.  Google Scholar

[12]

T. DuncanY. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion i. theory, SIAM Journal on Control and Optimization, 38 (2000), 582-612.  doi: 10.1137/S036301299834171X.  Google Scholar

[13]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[14]

H. Fu and J. Liu, Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 384 (2011), 70-86.  doi: 10.1016/j.jmaa.2011.02.076.  Google Scholar

[15]

H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales, Stochastic Processes and their Applications, 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.  Google Scholar

[16]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems, Multiscale Modeling & Simulation, 6 (2007), 577-594.  doi: 10.1137/060673345.  Google Scholar

[17]

R. Guo and B. Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson point processes,, Stochastic Analysis and Applications, 36 (2018), 751-766.  doi: 10.1080/07362994.2018.1461567.  Google Scholar

[18]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (2003), 1-32.  doi: 10.1142/S0219025703001110.  Google Scholar

[19]

H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770-808.   Google Scholar

[20]

J. Luo and T. Taniguchi, The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by poisson jumps, Stochastics & Dynamics, 9 (2010), 135-152.  doi: 10.1142/S0219493709002592.  Google Scholar

[21]

B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, Journal of Functional Analysis, 202 (2003), 277-305.  doi: 10.1016/S0022-1236(02)00065-4.  Google Scholar

[22]

J. MéminY. Mishura and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics & Probability Letters, 51 (2001), 197-206.  doi: 10.1016/S0167-7152(00)00157-7.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

B. Øksendal, Stochastic Differential Equations, Springer, Heidelberg, 2003. Google Scholar

[26]

B. PeiY. Xu and J. Wu, Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles,, Journal of Mathematical Analysis and Applications, 447 (2017), 243-268.  doi: 10.1016/j.jmaa.2016.10.010.  Google Scholar

[27]

B. Pei, Y. Xu and G. Yin, Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes, Stochastics & Dynamics, 18 (2018), 1850023, 19pp. doi: 10.1142/S0219493718500235.  Google Scholar

[28]

B. PeiY. Xu and G. Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Analysis: Theory Method and Application, 160 (2017), 159-176.  doi: 10.1016/j.na.2017.05.005.  Google Scholar

[29]

B. PeiY. XuG. Yin and X. Zhang, Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes, Nonlinear Analysis: Hybrid Systems, 27 (2018), 107-124.  doi: 10.1016/j.nahs.2017.08.008.  Google Scholar

[30]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Mathematica Bohemica, 118 (1993), 67-106.   Google Scholar

[31]

W. ThompsonR. Kuske and A. Monahan, Stochastic averaging of dynamical systems with multiple time scales forced with α-stable noise, Multiscale Modeling & Simulation, 13 (2015), 1194-1223.  doi: 10.1137/140990632.  Google Scholar

[32]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probability Theory and Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[33]

J. XuY. Miao and J. Liu, Strong averaging principle for slow-fast SPDEs with Poisson random measures, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2233-2256.  doi: 10.3934/dcdsb.2015.20.2233.  Google Scholar

[34]

J. Xu and Y. Miao, Lp (p > 2)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations, Nonlinear Analysis: Hybrid Systems, 18 (2015), 33-47.  doi: 10.1016/j.nahs.2015.05.001.  Google Scholar

[35]

J. Xu, Lp-strong convergence of the averaging principle for slow-fast SPDEs with jumps, Journal of Mathematical Analysis and Applications, 445 (2017), 342-373.  doi: 10.1016/j.jmaa.2016.07.058.  Google Scholar

[36]

Y. XuR. GuoD. LiuH. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1197-1212.  doi: 10.3934/dcdsb.2014.19.1197.  Google Scholar

[37]

Y. XuB. Pei and R. Guo, Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2257-2267.  doi: 10.3934/dcdsb.2015.20.2257.  Google Scholar

[38]

Y. Xu, B. Pei and J. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics & Dynamics, 17 (2017), 1750013, 16pp. doi: 10.1142/S0219493717500137.  Google Scholar

[39]

Y. XuJ. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D: Nonlinear Phenomena, 240 (2011), 1395-1401.  doi: 10.1016/j.physd.2011.06.001.  Google Scholar

show all references

References:
[1]

E. AlòsO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 29 (1999), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[2]

J. BaoG. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by alpha-stable noise: averaging principles, Bernoulli, 23 (2017), 645-669.  doi: 10.3150/14-BEJ677.  Google Scholar

[3]

J. Bao and C. Yuan, Numerical analysis for neutral SPDEs driven by α-stable processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 17 (2014), 1450031, 16pp. doi: 10.1142/S0219025714500313.  Google Scholar

[4]

P. Bezandry, Existence of almost periodic solutions for semilinear stochastic evolution equations driven by fractional Brownian motion, Electronic Journal of Differential Equations, 156 (2012), 1-21.   Google Scholar

[5]

C. Bréhier, Strong and weak orders in averaging for SPDEs, Stochastic Processes and their Applications, 122 (2012), 2553-2593.  doi: 10.1016/j.spa.2012.04.007.  Google Scholar

[6]

T. CaraballoM. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Analysis: Theory, Methods & Applications, 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[7]

S. Cerrai and M. Freidlin, Averaging principle for a class of stochastic reaction–diffusion equations, Probability Theory and Related Fields, 144 (2009), 137-177.  doi: 10.1007/s00440-008-0144-z.  Google Scholar

[8]

P. Chow, Stochastic Partial Differential Equations, Second edition. Advances in Applied Mathematics. CRC Press, Boca Raton, FL, 2015.  Google Scholar

[9]

I. Chueshov and B. Schmalfuss, Averaging of attractors and inertial manifolds for parabolic PDE with random coefficients, Advanced Nonlinear Studies, 5 (2005), 461-492.  doi: 10.1515/ans-2005-0402.  Google Scholar

[10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[11]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations, Elsevier, Amsterdam, 2014.  Google Scholar

[12]

T. DuncanY. Hu and B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion i. theory, SIAM Journal on Control and Optimization, 38 (2000), 582-612.  doi: 10.1137/S036301299834171X.  Google Scholar

[13]

M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, Springer-Verlag, New York, 1984. doi: 10.1007/978-1-4684-0176-9.  Google Scholar

[14]

H. Fu and J. Liu, Strong convergence in stochastic averaging principle for two time-scales stochastic partial differential equations, Journal of Mathematical Analysis and Applications, 384 (2011), 70-86.  doi: 10.1016/j.jmaa.2011.02.076.  Google Scholar

[15]

H. FuL. Wan and J. Liu, Strong convergence in averaging principle for stochastic hyperbolic–parabolic equations with two time-scales, Stochastic Processes and their Applications, 125 (2015), 3255-3279.  doi: 10.1016/j.spa.2015.03.004.  Google Scholar

[16]

D. Givon, Strong convergence rate for two-time-scale jump-diffusion stochastic differential sysytems, Multiscale Modeling & Simulation, 6 (2007), 577-594.  doi: 10.1137/060673345.  Google Scholar

[17]

R. Guo and B. Pei, Stochastic averaging principles for multi-valued stochastic differential equations driven by Poisson point processes,, Stochastic Analysis and Applications, 36 (2018), 751-766.  doi: 10.1080/07362994.2018.1461567.  Google Scholar

[18]

Y. Hu and B. Øksendal, Fractional white noise calculus and applications to finance, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 6 (2003), 1-32.  doi: 10.1142/S0219025703001110.  Google Scholar

[19]

H. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 116 (1951), 770-808.   Google Scholar

[20]

J. Luo and T. Taniguchi, The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by poisson jumps, Stochastics & Dynamics, 9 (2010), 135-152.  doi: 10.1142/S0219493709002592.  Google Scholar

[21]

B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, Journal of Functional Analysis, 202 (2003), 277-305.  doi: 10.1016/S0022-1236(02)00065-4.  Google Scholar

[22]

J. MéminY. Mishura and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Statistics & Probability Letters, 51 (2001), 197-206.  doi: 10.1016/S0167-7152(00)00157-7.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

B. Øksendal, Stochastic Differential Equations, Springer, Heidelberg, 2003. Google Scholar

[26]

B. PeiY. Xu and J. Wu, Two-time-scales hyperbolic-parabolic equations driven by Poisson random measures: Existence, uniqueness and averaging principles,, Journal of Mathematical Analysis and Applications, 447 (2017), 243-268.  doi: 10.1016/j.jmaa.2016.10.010.  Google Scholar

[27]

B. Pei, Y. Xu and G. Yin, Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes, Stochastics & Dynamics, 18 (2018), 1850023, 19pp. doi: 10.1142/S0219493718500235.  Google Scholar

[28]

B. PeiY. Xu and G. Yin, Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations, Nonlinear Analysis: Theory Method and Application, 160 (2017), 159-176.  doi: 10.1016/j.na.2017.05.005.  Google Scholar

[29]

B. PeiY. XuG. Yin and X. Zhang, Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes, Nonlinear Analysis: Hybrid Systems, 27 (2018), 107-124.  doi: 10.1016/j.nahs.2017.08.008.  Google Scholar

[30]

J. Seidler, Da Prato-Zabczyk's maximal inequality revisited I, Mathematica Bohemica, 118 (1993), 67-106.   Google Scholar

[31]

W. ThompsonR. Kuske and A. Monahan, Stochastic averaging of dynamical systems with multiple time scales forced with α-stable noise, Multiscale Modeling & Simulation, 13 (2015), 1194-1223.  doi: 10.1137/140990632.  Google Scholar

[32]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probability Theory and Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[33]

J. XuY. Miao and J. Liu, Strong averaging principle for slow-fast SPDEs with Poisson random measures, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2233-2256.  doi: 10.3934/dcdsb.2015.20.2233.  Google Scholar

[34]

J. Xu and Y. Miao, Lp (p > 2)-strong convergence of an averaging principle for two-time-scales jump-diffusion stochastic differential equations, Nonlinear Analysis: Hybrid Systems, 18 (2015), 33-47.  doi: 10.1016/j.nahs.2015.05.001.  Google Scholar

[35]

J. Xu, Lp-strong convergence of the averaging principle for slow-fast SPDEs with jumps, Journal of Mathematical Analysis and Applications, 445 (2017), 342-373.  doi: 10.1016/j.jmaa.2016.07.058.  Google Scholar

[36]

Y. XuR. GuoD. LiuH. Zhang and J. Duan, Stochastic averaging principle for dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 19 (2014), 1197-1212.  doi: 10.3934/dcdsb.2014.19.1197.  Google Scholar

[37]

Y. XuB. Pei and R. Guo, Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion, Discrete & Continuous Dynamical Systems-Series B, 20 (2015), 2257-2267.  doi: 10.3934/dcdsb.2015.20.2257.  Google Scholar

[38]

Y. Xu, B. Pei and J. Wu, Stochastic averaging principle for differential equations with non-Lipschitz coefficients driven by fractional Brownian motion, Stochastics & Dynamics, 17 (2017), 1750013, 16pp. doi: 10.1142/S0219493717500137.  Google Scholar

[39]

Y. XuJ. Duan and W. Xu, An averaging principle for stochastic dynamical systems with Lévy noise, Physica D: Nonlinear Phenomena, 240 (2011), 1395-1401.  doi: 10.1016/j.physd.2011.06.001.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[5]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[6]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[7]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[10]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[13]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[16]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[17]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[18]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (230)
  • HTML views (302)
  • Cited by (2)

Other articles
by authors

[Back to Top]