-
Previous Article
Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations
- DCDS-B Home
- This Issue
- Next Article
Existence of a global attractor for fractional differential hemivariational inequalities
1. | College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China |
2. | Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China |
3. | School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China |
In this paper, we introduce and study a new class of fractional differential hemivariational inequalities ((FDHVIs), for short) formulated by an initial-value fractional evolution inclusion and a hemivariational inequality in infinite Banach spaces. First, by applying measure of noncompactness, a fixed point theorem of a condensing multivalued map, we obtain the nonemptiness and compactness of the mild solution set for (FDHVIs). Further, we apply the obtained results to establish an existence theorem of the mild solution of a global attractor for the semiflow governed by a fractional differential hemivariational inequality ((FDHVI), for short). Finally, we provide an example to demonstrate the main results.
References:
[1] |
N. T. V. Anh and T. D. Ke,
On the differential variational inequalities of parabolic-elliptic type, Math. Methods Appl. Sci., 40 (2017), 4683-4695.
|
[2] |
D. Bothe,
Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109-138.
doi: 10.1007/BF02783044. |
[3] |
X. Chen and Z. Wang,
Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 146 (2014), 379-408.
doi: 10.1007/s10107-013-0689-1. |
[4] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[5] |
J. Diestel, W. M. Ruess and W. Schachermayer,
Weak compactness in $L^{1}(\mu, X)$, Proc. Am. Math. Soc., 118 (1993), 447-453.
doi: 10.2307/2160321. |
[6] |
J. Gwinner,
On a new class of differential variational inequalities and a stability result, Math. Program. Ser. B, 139 (2013), 205-221.
doi: 10.1007/s10107-013-0669-5. |
[7] |
A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966. |
[8] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivaluedmaps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001.
doi: 10.1515/9783110870893. |
[9] |
T. D. Ke and D. Lan,
Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.
doi: 10.2478/s13540-014-0157-5. |
[10] |
T. D. Ke and D. Lan,
Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fixed Point Theory Appl., 19 (2017), 2185-2208.
doi: 10.1007/s11784-017-0412-6. |
[11] |
T. D. Ke, N. V. Loi and V. Obukhovskii,
Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531-553.
doi: 10.1515/fca-2015-0033. |
[12] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, , Elsevier, Amsterdam, 2006. |
[13] |
X. S. Li, N. J. Huang and D. O'Regan,
Differential mixed variational inqualities in finite dimensional spaces, Nonlinear Anal., 72 (2010), 3875-3886.
doi: 10.1016/j.na.2010.01.025. |
[14] |
X. W. Li and Z. H. Liu,
Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56 (2018), 3569-3597.
doi: 10.1137/17M1162275. |
[15] |
Z. H. Liu, S. Migorski and S. Zeng,
Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.
doi: 10.1016/j.jde.2017.05.010. |
[16] |
Z. H. Liu, S. Zeng and D. Motreanu,
Partial differential hemivariational inequalities, Adv. Nonlinear Analysis, 7 (2018), 571-586.
doi: 10.1515/anona-2016-0102. |
[17] |
N. V. Loi, T. D. Ke, V. Obukhovskii and P. Zecca,
Topological methods for some classes of differential variational inequalities, J. Nonlinear Convex Anal., 17 (2016), 403-419.
|
[18] |
F. Mainardi, P. Paradisi and R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: An Emerging Science, Kluwer Academic Publisher, Dordrecht Boston, London, 2000. Google Scholar |
[19] |
V. S. Melnik and J. Valero,
On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[20] |
V. S. Melnik and J. Valero,
On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403.
doi: 10.1023/A:1026514727329. |
[21] |
S. Migórski,
On existence of solutions for parabolic hemivariational inequalities, J. Comput. Appl. Math., 129 (2001), 77-87.
doi: 10.1016/S0377-0427(00)00543-4. |
[22] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Springer-Verlag, New York, 2013. Google Scholar |
[23] |
J. S. Pang and D. E. Stewart,
Differential variational inequalities, Math. Program. Ser. A, 113 (2008), 345-424.
doi: 10.1007/s10107-006-0052-x. |
[24] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering,
Academic Press, New York, 1999. |
[25] |
A. U. Raghunathan, J. R. Pérez-Correa, E. Agosin and L. T. Biegler,
Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Ann. Oper. Res., 148 (2006), 251-270.
doi: 10.1007/s10479-006-0086-8. |
[26] |
D. E. Stewart,
Uniqueness for index-one differential variational inequalities, Nonlinear Anal., Hybrid Syst., 2 (2008), 812-818.
doi: 10.1016/j.nahs.2006.10.015. |
[27] |
A. Tasora, M. Anitescu, S. Negrini and D. Negrut,
A compliant visco-plastic particle contact model based on differential variational inequalities, International Journal of Nonlinear Mechanics, 53 (2013), 2-12.
doi: 10.1016/j.ijnonlinmec.2013.01.010. |
[28] |
I. Vrabie, $C_{0}$-Semigroups and Applications, Elsevier, Amsterdam, 2003. |
[29] |
X. Wang and N. J. Huang,
Differential vector variational inequalities in finite dimensional spaces, J. Optim. Theory Appl., 158 (2013), 109-129.
doi: 10.1007/s10957-012-0164-9. |
[30] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
show all references
References:
[1] |
N. T. V. Anh and T. D. Ke,
On the differential variational inequalities of parabolic-elliptic type, Math. Methods Appl. Sci., 40 (2017), 4683-4695.
|
[2] |
D. Bothe,
Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109-138.
doi: 10.1007/BF02783044. |
[3] |
X. Chen and Z. Wang,
Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 146 (2014), 379-408.
doi: 10.1007/s10107-013-0689-1. |
[4] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[5] |
J. Diestel, W. M. Ruess and W. Schachermayer,
Weak compactness in $L^{1}(\mu, X)$, Proc. Am. Math. Soc., 118 (1993), 447-453.
doi: 10.2307/2160321. |
[6] |
J. Gwinner,
On a new class of differential variational inequalities and a stability result, Math. Program. Ser. B, 139 (2013), 205-221.
doi: 10.1007/s10107-013-0669-5. |
[7] |
A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966. |
[8] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivaluedmaps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001.
doi: 10.1515/9783110870893. |
[9] |
T. D. Ke and D. Lan,
Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.
doi: 10.2478/s13540-014-0157-5. |
[10] |
T. D. Ke and D. Lan,
Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fixed Point Theory Appl., 19 (2017), 2185-2208.
doi: 10.1007/s11784-017-0412-6. |
[11] |
T. D. Ke, N. V. Loi and V. Obukhovskii,
Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531-553.
doi: 10.1515/fca-2015-0033. |
[12] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, , Elsevier, Amsterdam, 2006. |
[13] |
X. S. Li, N. J. Huang and D. O'Regan,
Differential mixed variational inqualities in finite dimensional spaces, Nonlinear Anal., 72 (2010), 3875-3886.
doi: 10.1016/j.na.2010.01.025. |
[14] |
X. W. Li and Z. H. Liu,
Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56 (2018), 3569-3597.
doi: 10.1137/17M1162275. |
[15] |
Z. H. Liu, S. Migorski and S. Zeng,
Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.
doi: 10.1016/j.jde.2017.05.010. |
[16] |
Z. H. Liu, S. Zeng and D. Motreanu,
Partial differential hemivariational inequalities, Adv. Nonlinear Analysis, 7 (2018), 571-586.
doi: 10.1515/anona-2016-0102. |
[17] |
N. V. Loi, T. D. Ke, V. Obukhovskii and P. Zecca,
Topological methods for some classes of differential variational inequalities, J. Nonlinear Convex Anal., 17 (2016), 403-419.
|
[18] |
F. Mainardi, P. Paradisi and R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: An Emerging Science, Kluwer Academic Publisher, Dordrecht Boston, London, 2000. Google Scholar |
[19] |
V. S. Melnik and J. Valero,
On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[20] |
V. S. Melnik and J. Valero,
On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403.
doi: 10.1023/A:1026514727329. |
[21] |
S. Migórski,
On existence of solutions for parabolic hemivariational inequalities, J. Comput. Appl. Math., 129 (2001), 77-87.
doi: 10.1016/S0377-0427(00)00543-4. |
[22] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Springer-Verlag, New York, 2013. Google Scholar |
[23] |
J. S. Pang and D. E. Stewart,
Differential variational inequalities, Math. Program. Ser. A, 113 (2008), 345-424.
doi: 10.1007/s10107-006-0052-x. |
[24] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering,
Academic Press, New York, 1999. |
[25] |
A. U. Raghunathan, J. R. Pérez-Correa, E. Agosin and L. T. Biegler,
Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Ann. Oper. Res., 148 (2006), 251-270.
doi: 10.1007/s10479-006-0086-8. |
[26] |
D. E. Stewart,
Uniqueness for index-one differential variational inequalities, Nonlinear Anal., Hybrid Syst., 2 (2008), 812-818.
doi: 10.1016/j.nahs.2006.10.015. |
[27] |
A. Tasora, M. Anitescu, S. Negrini and D. Negrut,
A compliant visco-plastic particle contact model based on differential variational inequalities, International Journal of Nonlinear Mechanics, 53 (2013), 2-12.
doi: 10.1016/j.ijnonlinmec.2013.01.010. |
[28] |
I. Vrabie, $C_{0}$-Semigroups and Applications, Elsevier, Amsterdam, 2003. |
[29] |
X. Wang and N. J. Huang,
Differential vector variational inequalities in finite dimensional spaces, J. Optim. Theory Appl., 158 (2013), 109-129.
doi: 10.1007/s10957-012-0164-9. |
[30] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
[1] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[2] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[3] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[4] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[5] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[6] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[7] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[8] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[9] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280 |
[10] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[11] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[12] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[13] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[14] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[15] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[16] |
José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271 |
[17] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[18] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[19] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[20] |
Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]