April  2020, 25(4): 1193-1212. doi: 10.3934/dcdsb.2019216

Existence of a global attractor for fractional differential hemivariational inequalities

1. 

College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

3. 

School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, Hubei 430074, China

* Corresponding author: Zhouchao Wei, weizhouchao@163.com

Received  December 2018 Revised  May 2019 Published  September 2019

Fund Project: The first author is supported by the Natural Science Foundation of Guangxi Province (2018GXNSFAA281021) and the Foundation of Guilin University of Technology (GUTQDJJ2017062). The second author is supported by the National Natural Science Foundation of China (11471230, 11671282). The third author is supported by the National Natural Science Foundation of China (11772306), Graduates education Teaching Research and Reform Project of China University of Geosciences (YJS2018311), and the Fundamental Research Funds for the Central Universities, China University of Geosciences (CUGGC05).

In this paper, we introduce and study a new class of fractional differential hemivariational inequalities ((FDHVIs), for short) formulated by an initial-value fractional evolution inclusion and a hemivariational inequality in infinite Banach spaces. First, by applying measure of noncompactness, a fixed point theorem of a condensing multivalued map, we obtain the nonemptiness and compactness of the mild solution set for (FDHVIs). Further, we apply the obtained results to establish an existence theorem of the mild solution of a global attractor for the semiflow governed by a fractional differential hemivariational inequality ((FDHVI), for short). Finally, we provide an example to demonstrate the main results.

Citation: Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1193-1212. doi: 10.3934/dcdsb.2019216
References:
[1]

N. T. V. Anh and T. D. Ke, On the differential variational inequalities of parabolic-elliptic type, Math. Methods Appl. Sci., 40 (2017), 4683-4695.   Google Scholar

[2]

D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[3]

X. Chen and Z. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 146 (2014), 379-408.  doi: 10.1007/s10107-013-0689-1.  Google Scholar

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[5]

J. DiestelW. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$, Proc. Am. Math. Soc., 118 (1993), 447-453.  doi: 10.2307/2160321.  Google Scholar

[6]

J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program. Ser. B, 139 (2013), 205-221.  doi: 10.1007/s10107-013-0669-5.  Google Scholar

[7]

A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966.  Google Scholar

[8]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivaluedmaps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001. doi: 10.1515/9783110870893.  Google Scholar

[9]

T. D. Ke and D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.  doi: 10.2478/s13540-014-0157-5.  Google Scholar

[10]

T. D. Ke and D. Lan, Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fixed Point Theory Appl., 19 (2017), 2185-2208.  doi: 10.1007/s11784-017-0412-6.  Google Scholar

[11]

T. D. KeN. V. Loi and V. Obukhovskii, Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531-553.  doi: 10.1515/fca-2015-0033.  Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, , Elsevier, Amsterdam, 2006.  Google Scholar

[13]

X. S. LiN. J. Huang and D. O'Regan, Differential mixed variational inqualities in finite dimensional spaces, Nonlinear Anal., 72 (2010), 3875-3886.  doi: 10.1016/j.na.2010.01.025.  Google Scholar

[14]

X. W. Li and Z. H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56 (2018), 3569-3597.  doi: 10.1137/17M1162275.  Google Scholar

[15]

Z. H. LiuS. Migorski and S. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.  doi: 10.1016/j.jde.2017.05.010.  Google Scholar

[16]

Z. H. LiuS. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Analysis, 7 (2018), 571-586.  doi: 10.1515/anona-2016-0102.  Google Scholar

[17]

N. V. LoiT. D. KeV. Obukhovskii and P. Zecca, Topological methods for some classes of differential variational inequalities, J. Nonlinear Convex Anal., 17 (2016), 403-419.   Google Scholar

[18]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: An Emerging Science, Kluwer Academic Publisher, Dordrecht Boston, London, 2000. Google Scholar

[19]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[20]

V. S. Melnik and J. Valero, On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403.  doi: 10.1023/A:1026514727329.  Google Scholar

[21]

S. Migórski, On existence of solutions for parabolic hemivariational inequalities, J. Comput. Appl. Math., 129 (2001), 77-87.  doi: 10.1016/S0377-0427(00)00543-4.  Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Springer-Verlag, New York, 2013. Google Scholar

[23]

J. S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program. Ser. A, 113 (2008), 345-424.  doi: 10.1007/s10107-006-0052-x.  Google Scholar

[24]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.  Google Scholar

[25]

A. U. RaghunathanJ. R. Pérez-CorreaE. Agosin and L. T. Biegler, Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Ann. Oper. Res., 148 (2006), 251-270.  doi: 10.1007/s10479-006-0086-8.  Google Scholar

[26]

D. E. Stewart, Uniqueness for index-one differential variational inequalities, Nonlinear Anal., Hybrid Syst., 2 (2008), 812-818.  doi: 10.1016/j.nahs.2006.10.015.  Google Scholar

[27]

A. TasoraM. AnitescuS. Negrini and D. Negrut, A compliant visco-plastic particle contact model based on differential variational inequalities, International Journal of Nonlinear Mechanics, 53 (2013), 2-12.  doi: 10.1016/j.ijnonlinmec.2013.01.010.  Google Scholar

[28]

I. Vrabie, $C_{0}$-Semigroups and Applications, Elsevier, Amsterdam, 2003.  Google Scholar

[29]

X. Wang and N. J. Huang, Differential vector variational inequalities in finite dimensional spaces, J. Optim. Theory Appl., 158 (2013), 109-129.  doi: 10.1007/s10957-012-0164-9.  Google Scholar

[30]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

show all references

References:
[1]

N. T. V. Anh and T. D. Ke, On the differential variational inequalities of parabolic-elliptic type, Math. Methods Appl. Sci., 40 (2017), 4683-4695.   Google Scholar

[2]

D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[3]

X. Chen and Z. Wang, Differential variational inequality approach to dynamic games with shared constraints, Math. Program. Ser. A, 146 (2014), 379-408.  doi: 10.1007/s10107-013-0689-1.  Google Scholar

[4]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.  Google Scholar

[5]

J. DiestelW. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$, Proc. Am. Math. Soc., 118 (1993), 447-453.  doi: 10.2307/2160321.  Google Scholar

[6]

J. Gwinner, On a new class of differential variational inequalities and a stability result, Math. Program. Ser. B, 139 (2013), 205-221.  doi: 10.1007/s10107-013-0669-5.  Google Scholar

[7]

A. Halanay, Differential Equations, Stability, Oscillations, Time Lags, Academic Press, New York and London, 1966.  Google Scholar

[8]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivaluedmaps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, New York, 2001. doi: 10.1515/9783110870893.  Google Scholar

[9]

T. D. Ke and D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 17 (2014), 96-121.  doi: 10.2478/s13540-014-0157-5.  Google Scholar

[10]

T. D. Ke and D. Lan, Fixed point approach for weakly asymptotic stability of fractional differential inclusions involving impulsive effects, J. Fixed Point Theory Appl., 19 (2017), 2185-2208.  doi: 10.1007/s11784-017-0412-6.  Google Scholar

[11]

T. D. KeN. V. Loi and V. Obukhovskii, Decay solutions for a class of fractional differential variational inequalities, Fract. Calc. Appl. Anal., 18 (2015), 531-553.  doi: 10.1515/fca-2015-0033.  Google Scholar

[12]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, , Elsevier, Amsterdam, 2006.  Google Scholar

[13]

X. S. LiN. J. Huang and D. O'Regan, Differential mixed variational inqualities in finite dimensional spaces, Nonlinear Anal., 72 (2010), 3875-3886.  doi: 10.1016/j.na.2010.01.025.  Google Scholar

[14]

X. W. Li and Z. H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Control Optim., 56 (2018), 3569-3597.  doi: 10.1137/17M1162275.  Google Scholar

[15]

Z. H. LiuS. Migorski and S. Zeng, Partial differential variational inequalities involving nonlocal boundary conditions in Banach spaces, J. Differential Equations, 263 (2017), 3989-4006.  doi: 10.1016/j.jde.2017.05.010.  Google Scholar

[16]

Z. H. LiuS. Zeng and D. Motreanu, Partial differential hemivariational inequalities, Adv. Nonlinear Analysis, 7 (2018), 571-586.  doi: 10.1515/anona-2016-0102.  Google Scholar

[17]

N. V. LoiT. D. KeV. Obukhovskii and P. Zecca, Topological methods for some classes of differential variational inequalities, J. Nonlinear Convex Anal., 17 (2016), 403-419.   Google Scholar

[18]

F. Mainardi, P. Paradisi and R. Gorenflo, Probability Distributions Generated by Fractional Diffusion Equations, in: J. Kertesz, I. Kondor (Eds.), Econophysics: An Emerging Science, Kluwer Academic Publisher, Dordrecht Boston, London, 2000. Google Scholar

[19]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.  doi: 10.1023/A:1008608431399.  Google Scholar

[20]

V. S. Melnik and J. Valero, On global attractors of multivalued semiprocesses and nonautonomous evolution inclusions, Set-Valued Anal., 8 (2000), 375-403.  doi: 10.1023/A:1026514727329.  Google Scholar

[21]

S. Migórski, On existence of solutions for parabolic hemivariational inequalities, J. Comput. Appl. Math., 129 (2001), 77-87.  doi: 10.1016/S0377-0427(00)00543-4.  Google Scholar

[22]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Models and Analysis of Contact Problems, Springer-Verlag, New York, 2013. Google Scholar

[23]

J. S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program. Ser. A, 113 (2008), 345-424.  doi: 10.1007/s10107-006-0052-x.  Google Scholar

[24]

I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.  Google Scholar

[25]

A. U. RaghunathanJ. R. Pérez-CorreaE. Agosin and L. T. Biegler, Parameter estimation in metabolic flux balance models for batch fermentation-formulation and solution using differential variational inequalities, Ann. Oper. Res., 148 (2006), 251-270.  doi: 10.1007/s10479-006-0086-8.  Google Scholar

[26]

D. E. Stewart, Uniqueness for index-one differential variational inequalities, Nonlinear Anal., Hybrid Syst., 2 (2008), 812-818.  doi: 10.1016/j.nahs.2006.10.015.  Google Scholar

[27]

A. TasoraM. AnitescuS. Negrini and D. Negrut, A compliant visco-plastic particle contact model based on differential variational inequalities, International Journal of Nonlinear Mechanics, 53 (2013), 2-12.  doi: 10.1016/j.ijnonlinmec.2013.01.010.  Google Scholar

[28]

I. Vrabie, $C_{0}$-Semigroups and Applications, Elsevier, Amsterdam, 2003.  Google Scholar

[29]

X. Wang and N. J. Huang, Differential vector variational inequalities in finite dimensional spaces, J. Optim. Theory Appl., 158 (2013), 109-129.  doi: 10.1007/s10957-012-0164-9.  Google Scholar

[30]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.  Google Scholar

[1]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[5]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[6]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[9]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[10]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[11]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[12]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[13]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[17]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[20]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (303)
  • HTML views (375)
  • Cited by (0)

Other articles
by authors

[Back to Top]