April  2020, 25(4): 1213-1240. doi: 10.3934/dcdsb.2019217

Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations

1. 

Mathematics Department, Universidad del Valle, Cali, Valle del Cauca, Colombia

2. 

Mathematics and Statistics Department, Universidad Nacional de Colombia, Manizales, Caldas, Colombia

* Corresponding author: José R. Quintero

Received  January 2019 Revised  June 2019 Published  April 2020 Early access  September 2019

Fund Project: JRQ is supported by the Mathematics Department at Universidad del Valle and JCC is supported by the Mathematics Department at Universidad Nacional de Colombia.

In this paper we establish the nonlinear orbital instability of ground state standing waves for a Benney-Roskes/Zakharov-Rubenchik system that models the interaction of low amplitude high frequency waves, acustic type waves in $ N = 2 $ and $ N = 3 $ spatial directions. For $ N = 2 $, we follow M. Weinstein's approach used in the case of the Schrödinger equation, by establishing a virial identity that relates the second variation of a momentum type functional with the energy (Hamiltonian) on a class of solutions for the Benney-Roskes/Zakharov-Rubenchik system. From this identity, it is possible to show that solutions for the Benney-Roskes/Zakharov-Rubenchik system blow up in finite time, in the case that the energy (Hamiltonian) of the initial data is negative, indicating a possible blow-up result for non radial solutions to the Zakharov equations. For $ N = 3 $, we establish the instability by using a scaling argument and the existence of invariant regions under the flow due to a concavity argument.

Citation: José R. Quintero, Juan C. Cordero. Instability of the standing waves for a Benney-Roskes/Zakharov-Rubenchik system and blow-up for the Zakharov equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1213-1240. doi: 10.3934/dcdsb.2019217
References:
[1]

D. Beney and G. Roskes, Wave instability, Studies in Applied Math, 48 (1969), 455-472. 

[2]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Communications in Partial Differential Equations, 17 (1992), 967-988.  doi: 10.1080/03605309208820872.

[3]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system, Annales de L'I.H.P, A, 58 (1993), 84-104. 

[4]

J. Cordero, Subsonic and Supersonic Limits for the Zakharov-Rubenchik System, Ph.D thesis, Instituto de Matemática Pura e Aplicada - IMPA, Rio de Janeiro, 2010.

[5]

J. C. Cordero, Supersonic limits for the Zakharov-Rubenchik system, Journal of Differential Equations, 261 (2016), 5260-5288.  doi: 10.1016/j.jde.2016.07.022.

[6]

A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. R. Soc. A, 338 (1974), 101-110.  doi: 10.1098/rspa.1974.0076.

[7]

J. Ghidaglia and J. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.  doi: 10.1088/0951-7715/3/2/010.

[8]

J. Ghidaglia and J. Saut, On the Zakharov-Schulman equations, in Nonlinear Dispersive Waves (L. Debnath Ed.), World Scientific, (1992), 83–97.

[9]

R. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[10]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in presence of symmetry, I, Functional Anal, 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[11]

E. Kuznetsov and V. Zakharov, Hamiltonian formalism for systems of hydrodynamics type, Mathematical Physics Review, Soviet Scientific Reviews, 4 (1984), 167-220. 

[12]

D. Lannnes, Water Waves: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol. 188, AMS, Providence, 2013. doi: 10.1090/surv/188.

[13]

F. Merle, Blow-up Results of Viriel type for Zakharov Equations, Comunications in Mathematical Physics, 175 (1996), 433-455.  doi: 10.1007/BF02102415.

[14]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Physica D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.

[15]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik equation, Reports on Mathematical Physics, 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.

[16]

T. PassotC. Sulem and P. Sulem, Generalization of acoustic fronts by focusing wave packets, Physic D, 94 (1996), 168-187. 

[17]

A. Rubenchik and V. Zakharov, Nonlinear interaction of high-frequency and low-frequency waves, Prikl. Mat. Techn. Phys, 5 (1972), 84-98. 

[18]

J. C. Saut and G. Ponce, Wellposedness for the Benney-Roskes/Zakharov-Rubenchik system, Discrete and Continuous Dynamical Systems, 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.

[19]

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, Princeton, New Jersey, 1970.

[20]

M. Tsutsumi, Nonexistence of global solutions to nonlinear Schrödinger, (unpublished manuscript), 1982.

[21]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys, 87 (1983), 567-576. 

show all references

References:
[1]

D. Beney and G. Roskes, Wave instability, Studies in Applied Math, 48 (1969), 455-472. 

[2]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system, Communications in Partial Differential Equations, 17 (1992), 967-988.  doi: 10.1080/03605309208820872.

[3]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system, Annales de L'I.H.P, A, 58 (1993), 84-104. 

[4]

J. Cordero, Subsonic and Supersonic Limits for the Zakharov-Rubenchik System, Ph.D thesis, Instituto de Matemática Pura e Aplicada - IMPA, Rio de Janeiro, 2010.

[5]

J. C. Cordero, Supersonic limits for the Zakharov-Rubenchik system, Journal of Differential Equations, 261 (2016), 5260-5288.  doi: 10.1016/j.jde.2016.07.022.

[6]

A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. R. Soc. A, 338 (1974), 101-110.  doi: 10.1098/rspa.1974.0076.

[7]

J. Ghidaglia and J. Saut, On the initial value problem for the Davey-Stewartson systems, Nonlinearity, 3 (1990), 475-506.  doi: 10.1088/0951-7715/3/2/010.

[8]

J. Ghidaglia and J. Saut, On the Zakharov-Schulman equations, in Nonlinear Dispersive Waves (L. Debnath Ed.), World Scientific, (1992), 83–97.

[9]

R. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. Math. Phys, 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[10]

M. GrillakisJ. Shatah and W. Strauss, Stability theory of solitary waves in presence of symmetry, I, Functional Anal, 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.

[11]

E. Kuznetsov and V. Zakharov, Hamiltonian formalism for systems of hydrodynamics type, Mathematical Physics Review, Soviet Scientific Reviews, 4 (1984), 167-220. 

[12]

D. Lannnes, Water Waves: Mathematical Theory and Asymptotics, Mathematical Surveys and Monographs, vol. 188, AMS, Providence, 2013. doi: 10.1090/surv/188.

[13]

F. Merle, Blow-up Results of Viriel type for Zakharov Equations, Comunications in Mathematical Physics, 175 (1996), 433-455.  doi: 10.1007/BF02102415.

[14]

F. Oliveira, Stability of the solitons for the one-dimensional Zakharov-Rubenchik equation, Physica D, 175 (2003), 220-240.  doi: 10.1016/S0167-2789(02)00722-4.

[15]

F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik equation, Reports on Mathematical Physics, 61 (2008), 13-27.  doi: 10.1016/S0034-4877(08)00006-2.

[16]

T. PassotC. Sulem and P. Sulem, Generalization of acoustic fronts by focusing wave packets, Physic D, 94 (1996), 168-187. 

[17]

A. Rubenchik and V. Zakharov, Nonlinear interaction of high-frequency and low-frequency waves, Prikl. Mat. Techn. Phys, 5 (1972), 84-98. 

[18]

J. C. Saut and G. Ponce, Wellposedness for the Benney-Roskes/Zakharov-Rubenchik system, Discrete and Continuous Dynamical Systems, 13 (2005), 811-825.  doi: 10.3934/dcds.2005.13.811.

[19]

E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton university press, Princeton, New Jersey, 1970.

[20]

M. Tsutsumi, Nonexistence of global solutions to nonlinear Schrödinger, (unpublished manuscript), 1982.

[21]

M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys, 87 (1983), 567-576. 

[1]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[2]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[3]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[4]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[5]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[6]

Juan Huang. Scattering and strong instability of the standing waves for dipolar quantum gases. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4493-4513. doi: 10.3934/dcdsb.2020297

[7]

Hiroaki Kikuchi. Remarks on the orbital instability of standing waves for the wave-Schrödinger system in higher dimensions. Communications on Pure and Applied Analysis, 2010, 9 (2) : 351-364. doi: 10.3934/cpaa.2010.9.351

[8]

Yue Zhang, Jian Zhang. Stability and instability of standing waves for Gross-Pitaevskii equations with double power nonlinearities. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022007

[9]

Walter A. Strauss, Kimitoshi Tsutaya. Existence and blow up of small amplitude nonlinear waves with a negative potential. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 175-188. doi: 10.3934/dcds.1997.3.175

[10]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[11]

Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737

[12]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

[13]

Orlando Lopes. A linearized instability result for solitary waves. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[14]

Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178

[15]

David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909

[16]

Fahe Miao, Michal Fečkan, Jinrong Wang. Exact solution and instability for geophysical edge waves. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2447-2461. doi: 10.3934/cpaa.2022067

[17]

Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148

[18]

Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359

[19]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[20]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (298)
  • HTML views (284)
  • Cited by (1)

Other articles
by authors

[Back to Top]