
-
Previous Article
Singularity formation to the two-dimensional non-barotropic non-resistive magnetohydrodynamic equations with zero heat conduction in a bounded domain
- DCDS-B Home
- This Issue
-
Next Article
Spreading speed of a degenerate and cooperative epidemic model with free boundaries
A criterion for the existence of relaxation oscillations with applications to predator-prey systems and an epidemic model
1. | Department of Mathematics, University of Miami, 1365 Memorial Drive, Coral Gables, FL 33146, USA |
2. | Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada |
We derive characteristic functions to determine the number and stability of relaxation oscillations for a class of planar systems. Applying our criterion, we give conditions under which the chemostat predator-prey system has a globally orbitally asymptotically stable limit cycle. Also we demonstrate that a prescribed number of relaxation oscillations can be constructed by varying the perturbation for an epidemic model studied by Li et al. [SIAM J. Appl. Math, 2016].
References:
[1] |
T. Bolger, B. Eastman, M. Hill and G. S. K. Wolkowicz, A predator-prey model in the chemostat with Holling type Ⅱ (Monod) response function, preprint. Google Scholar |
[2] |
G. J. Butler and P. Waltman,
Persistence in dynamical systems, J. Differential Equations, 63 (1986), 255-263.
doi: 10.1016/0022-0396(86)90049-5. |
[3] |
K.-S. Cheng,
Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.
doi: 10.1137/0512047. |
[4] |
P. De Maesschalck and F. Dumortier,
Singular perturbations and vanishing passage through a turning point, J. Differential Equations, 248 (2010), 2294-2328.
doi: 10.1016/j.jde.2009.11.009. |
[5] |
P. De Maesschalck and S. Schecter,
The entry-exit function and geometric singular perturbation theory, J. Differential Equations, 260 (2016), 6697-6715.
doi: 10.1016/j.jde.2016.01.008. |
[6] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[7] |
A. Ghazaryan, V. Manukian and S. Schecter, Travelling waves in the Holling-Tanner model with weak diffusion, Proc. R. Soc. Lond. Ser. A, 471 (2015), 20150045, 16pp.
doi: 10.1098/rspa.2015.0045. |
[8] |
J. R. Graef, M. Y. Li and L. Wang, A study on the effects of disease caused death in a simple epidemic model, in Dynamical Systems and Differential Equations (eds. W. Chen and S. Hu), Southwest Missouri State University Press, 1 (1998), 288–300. |
[9] |
S.-B. Hsu and J. Shi,
Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[10] |
T.-H. Hsu,
On bifurcation delay: An alternative approach using geometric singular perturbation theory, J. Differential Equations, 262 (2017), 1617-1630.
doi: 10.1016/j.jde.2016.10.022. |
[11] |
T.-H. Hsu,
Number and stability of relaxation oscillations for predator-prey systems with small death rates, SIAM J. Appl. Dyn. Syst., 18 (2019), 33-67.
doi: 10.1137/18M1166705. |
[12] |
C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math., Springer, Berlin, 1995, 44–118.
doi: 10.1007/BFb0095239. |
[13] |
Y. Kuang and H. I. Freedman,
Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci., 88 (1988), 67-84.
doi: 10.1016/0025-5564(88)90049-1. |
[14] |
C. Kuehn, Multiple Time Scale Dynamics, vol. 191 of Applied Mathematical Sciences, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[15] |
C. Li and H. Zhu,
Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910.
doi: 10.1016/j.jde.2012.10.003. |
[16] |
M. Y. Li, W. Liu, C. Shan and Y. Yi,
Turning points and relaxation oscillation cycles in simple epidemic models, SIAM J. Appl. Math., 76 (2016), 663-687.
doi: 10.1137/15M1038785. |
[17] |
L.-P. Liou and K.-S. Cheng,
On the uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 19 (1988), 867-878.
doi: 10.1137/0519060. |
[18] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Differential Equations, 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[19] |
N. L. Lundström and G. Söderbacka, Estimates of size of cycle in a predator-prey system, Differential Equations and Dynamical Systems, (2018), 1–29.
doi: 10.1007/s12591-018-0422-x. |
[20] |
S. H. Piltz, F. Veerman, P. K. Maini and M. A. Porter,
A predator-2 prey fast-slow dynamical system for rapid predator evolution, SIAM J. Appl. Dyn. Syst., 16 (2017), 54-90.
doi: 10.1137/16M1068426. |
[21] |
H. Renato,
Predator–prey systems with small predator's death rate, Electronic Journal of Qualitative Theory of Differential Equations, 2018 (2018), 1-16.
doi: 10.14232/ejqtde.2018.1.86. |
[22] |
J. Shen, C.-H. Hsu and T.-H. Yang, Fast–slow dynamics for intraguild predation models with evolutionary effects, Journal of Dynamics and Differential Equations, (2019), 1–26.
doi: 10.1007/s10884-019-09744-3. |
[23] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, vol. 13 of Cambridge Studies in
Mathematical Biology, Cambridge University Press, Cambridge, 1995, Dynamics of microbial
competition.
doi: 10.1017/CBO9780511530043. |
[24] |
J. Wang, X. Zhang, J. Shi and Y. Wang,
Profile of the unique limit cycle in a class of general predator-prey systems, Appl. Math. Comput., 242 (2014), 397-406.
doi: 10.1016/j.amc.2014.05.020. |
[25] |
G. S. K. Wolkowicz,
Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., 48 (1988), 592-606.
doi: 10.1137/0148033. |
show all references
References:
[1] |
T. Bolger, B. Eastman, M. Hill and G. S. K. Wolkowicz, A predator-prey model in the chemostat with Holling type Ⅱ (Monod) response function, preprint. Google Scholar |
[2] |
G. J. Butler and P. Waltman,
Persistence in dynamical systems, J. Differential Equations, 63 (1986), 255-263.
doi: 10.1016/0022-0396(86)90049-5. |
[3] |
K.-S. Cheng,
Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541-548.
doi: 10.1137/0512047. |
[4] |
P. De Maesschalck and F. Dumortier,
Singular perturbations and vanishing passage through a turning point, J. Differential Equations, 248 (2010), 2294-2328.
doi: 10.1016/j.jde.2009.11.009. |
[5] |
P. De Maesschalck and S. Schecter,
The entry-exit function and geometric singular perturbation theory, J. Differential Equations, 260 (2016), 6697-6715.
doi: 10.1016/j.jde.2016.01.008. |
[6] |
N. Fenichel,
Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), 53-98.
doi: 10.1016/0022-0396(79)90152-9. |
[7] |
A. Ghazaryan, V. Manukian and S. Schecter, Travelling waves in the Holling-Tanner model with weak diffusion, Proc. R. Soc. Lond. Ser. A, 471 (2015), 20150045, 16pp.
doi: 10.1098/rspa.2015.0045. |
[8] |
J. R. Graef, M. Y. Li and L. Wang, A study on the effects of disease caused death in a simple epidemic model, in Dynamical Systems and Differential Equations (eds. W. Chen and S. Hu), Southwest Missouri State University Press, 1 (1998), 288–300. |
[9] |
S.-B. Hsu and J. Shi,
Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[10] |
T.-H. Hsu,
On bifurcation delay: An alternative approach using geometric singular perturbation theory, J. Differential Equations, 262 (2017), 1617-1630.
doi: 10.1016/j.jde.2016.10.022. |
[11] |
T.-H. Hsu,
Number and stability of relaxation oscillations for predator-prey systems with small death rates, SIAM J. Appl. Dyn. Syst., 18 (2019), 33-67.
doi: 10.1137/18M1166705. |
[12] |
C. K. R. T. Jones, Geometric singular perturbation theory, in Dynamical systems (Montecatini Terme, 1994), vol. 1609 of Lecture Notes in Math., Springer, Berlin, 1995, 44–118.
doi: 10.1007/BFb0095239. |
[13] |
Y. Kuang and H. I. Freedman,
Uniqueness of limit cycles in Gause-type models of predator-prey systems, Math. Biosci., 88 (1988), 67-84.
doi: 10.1016/0025-5564(88)90049-1. |
[14] |
C. Kuehn, Multiple Time Scale Dynamics, vol. 191 of Applied Mathematical Sciences, Springer, Cham, 2015.
doi: 10.1007/978-3-319-12316-5. |
[15] |
C. Li and H. Zhu,
Canard cycles for predator-prey systems with Holling types of functional response, J. Differential Equations, 254 (2013), 879-910.
doi: 10.1016/j.jde.2012.10.003. |
[16] |
M. Y. Li, W. Liu, C. Shan and Y. Yi,
Turning points and relaxation oscillation cycles in simple epidemic models, SIAM J. Appl. Math., 76 (2016), 663-687.
doi: 10.1137/15M1038785. |
[17] |
L.-P. Liou and K.-S. Cheng,
On the uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 19 (1988), 867-878.
doi: 10.1137/0519060. |
[18] |
W. Liu, D. Xiao and Y. Yi,
Relaxation oscillations in a class of predator-prey systems, J. Differential Equations, 188 (2003), 306-331.
doi: 10.1016/S0022-0396(02)00076-1. |
[19] |
N. L. Lundström and G. Söderbacka, Estimates of size of cycle in a predator-prey system, Differential Equations and Dynamical Systems, (2018), 1–29.
doi: 10.1007/s12591-018-0422-x. |
[20] |
S. H. Piltz, F. Veerman, P. K. Maini and M. A. Porter,
A predator-2 prey fast-slow dynamical system for rapid predator evolution, SIAM J. Appl. Dyn. Syst., 16 (2017), 54-90.
doi: 10.1137/16M1068426. |
[21] |
H. Renato,
Predator–prey systems with small predator's death rate, Electronic Journal of Qualitative Theory of Differential Equations, 2018 (2018), 1-16.
doi: 10.14232/ejqtde.2018.1.86. |
[22] |
J. Shen, C.-H. Hsu and T.-H. Yang, Fast–slow dynamics for intraguild predation models with evolutionary effects, Journal of Dynamics and Differential Equations, (2019), 1–26.
doi: 10.1007/s10884-019-09744-3. |
[23] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, vol. 13 of Cambridge Studies in
Mathematical Biology, Cambridge University Press, Cambridge, 1995, Dynamics of microbial
competition.
doi: 10.1017/CBO9780511530043. |
[24] |
J. Wang, X. Zhang, J. Shi and Y. Wang,
Profile of the unique limit cycle in a class of general predator-prey systems, Appl. Math. Comput., 242 (2014), 397-406.
doi: 10.1016/j.amc.2014.05.020. |
[25] |
G. S. K. Wolkowicz,
Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., 48 (1988), 592-606.
doi: 10.1137/0148033. |








[1] |
Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 |
[2] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[3] |
Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693 |
[4] |
Peter A. Braza. Predator-Prey Dynamics with Disease in the Prey. Mathematical Biosciences & Engineering, 2005, 2 (4) : 703-717. doi: 10.3934/mbe.2005.2.703 |
[5] |
Benjamin Leard, Catherine Lewis, Jorge Rebaza. Dynamics of ratio-dependent Predator-Prey models with nonconstant harvesting. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 303-315. doi: 10.3934/dcdss.2008.1.303 |
[6] |
Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823 |
[7] |
Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175 |
[8] |
Henri Berestycki, Alessandro Zilio. Predator-prey models with competition, Part Ⅲ: Classification of stationary solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7141-7162. doi: 10.3934/dcds.2019299 |
[9] |
Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747 |
[10] |
C. R. Zhu, K. Q. Lan. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 289-306. doi: 10.3934/dcdsb.2010.14.289 |
[11] |
Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345 |
[12] |
Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021 |
[13] |
Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877 |
[14] |
Changrong Zhu, Lei Kong. Bifurcations analysis of Leslie-Gower predator-prey models with nonlinear predator-harvesting. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1187-1206. doi: 10.3934/dcdss.2017065 |
[15] |
Seong Lee, Inkyung Ahn. Diffusive predator-prey models with stage structure on prey and beddington-deangelis functional responses. Communications on Pure & Applied Analysis, 2017, 16 (2) : 427-442. doi: 10.3934/cpaa.2017022 |
[16] |
Xiang-Sheng Wang, Haiyan Wang, Jianhong Wu. Traveling waves of diffusive predator-prey systems: Disease outbreak propagation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3303-3324. doi: 10.3934/dcds.2012.32.3303 |
[17] |
J. Gani, R. J. Swift. Prey-predator models with infected prey and predators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5059-5066. doi: 10.3934/dcds.2013.33.5059 |
[18] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071 |
[19] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[20] |
Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]