-
Previous Article
Traveling waves for nonlocal Lotka-Volterra competition systems
- DCDS-B Home
- This Issue
-
Next Article
Ergodicity of non-autonomous discrete systems with non-uniform expansion
On regularity of stochastic convolutions of functional linear differential equations with memory
a. | School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China |
b. | Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK |
In this work, we consider the regularity property of stochastic convolutions for a class of abstract linear stochastic retarded functional differential equations with unbounded operator coefficients. We first establish some useful estimates on fundamental solutions which are time delay versions of those on $ C_0 $-semigroups. To this end, we develop a scheme of constructing the resolvent operators for the integrodifferential equations of Volterra type since the equation under investigation is of this type in each subinterval describing the segment of its solution. Then we apply these estimates to stochastic convolutions of our equations to obtain the desired regularity property.
References:
[1] |
B. D. Coleman and M. E. Gurtin,
Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.
doi: 10.1007/BF01596912. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[3] |
G. Di Blasio, K. Kunisch and E. Sinestrari,
Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.
doi: 10.1007/BF02761404. |
[4] |
J. Jeong,
Stabilizability of retarded functional differential equation in Hilbert space, Osaka J. Math., 28 (1991), 347-365.
|
[5] |
J. Jeong, S. I. Nakagiri and H. Tanabe,
Structural operators and semigroups associated with functional differential equations in Hilbert spaces, Osaka J. Math., 30 (1993), 365-395.
|
[6] |
J. W. Nunziato,
On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.
doi: 10.1090/qam/295683. |
[7] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, , Applied Mathematical Sciences, Vol. 44. Springer Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[8] |
J. Prüss,
On resolvent operators for linear integrodifferential equations of Volterra type, J. Integral Equations, 5 (1983), 211-236.
|
[9] |
E. Sinestrari,
On a class of retarded partial differential equations of Volterra type, Math. Z., 186 (1984), 223-246.
doi: 10.1007/BF01161806. |
[10] |
E. Sinestrari,
A noncompact differentiable semigroup arising from an abstract delay equation, C. R. Math. Rep. Acad. Sci. Canada., 6 (1984), 43-48.
|
[11] |
H. Tanabe,
On fundamental solution of differential equation with time delay in Banach space, Proc. Japan Acad., 64 (1988), 131-134.
doi: 10.3792/pjaa.64.131. |
[12] |
H. Tanabe,
Fundamental solutions for linear retarded functional differential equations in Banach spaces, Funkcialaj Ekvacioj, 35 (1992), 149-177.
|
show all references
References:
[1] |
B. D. Coleman and M. E. Gurtin,
Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.
doi: 10.1007/BF01596912. |
[2] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.
doi: 10.1017/CBO9781107295513.![]() ![]() |
[3] |
G. Di Blasio, K. Kunisch and E. Sinestrari,
Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.
doi: 10.1007/BF02761404. |
[4] |
J. Jeong,
Stabilizability of retarded functional differential equation in Hilbert space, Osaka J. Math., 28 (1991), 347-365.
|
[5] |
J. Jeong, S. I. Nakagiri and H. Tanabe,
Structural operators and semigroups associated with functional differential equations in Hilbert spaces, Osaka J. Math., 30 (1993), 365-395.
|
[6] |
J. W. Nunziato,
On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.
doi: 10.1090/qam/295683. |
[7] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, , Applied Mathematical Sciences, Vol. 44. Springer Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[8] |
J. Prüss,
On resolvent operators for linear integrodifferential equations of Volterra type, J. Integral Equations, 5 (1983), 211-236.
|
[9] |
E. Sinestrari,
On a class of retarded partial differential equations of Volterra type, Math. Z., 186 (1984), 223-246.
doi: 10.1007/BF01161806. |
[10] |
E. Sinestrari,
A noncompact differentiable semigroup arising from an abstract delay equation, C. R. Math. Rep. Acad. Sci. Canada., 6 (1984), 43-48.
|
[11] |
H. Tanabe,
On fundamental solution of differential equation with time delay in Banach space, Proc. Japan Acad., 64 (1988), 131-134.
doi: 10.3792/pjaa.64.131. |
[12] |
H. Tanabe,
Fundamental solutions for linear retarded functional differential equations in Banach spaces, Funkcialaj Ekvacioj, 35 (1992), 149-177.
|
[1] |
Yalçin Sarol, Frederi Viens. Time regularity of the evolution solution to fractional stochastic heat equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 895-910. doi: 10.3934/dcdsb.2006.6.895 |
[2] |
Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101 |
[3] |
Manh Hong Duong, Hoang Minh Tran. On the fundamental solution and a variational formulation for a degenerate diffusion of Kolmogorov type. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3407-3438. doi: 10.3934/dcds.2018146 |
[4] |
Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099 |
[5] |
Reinhard Farwig, Ronald B. Guenther, Enrique A. Thomann, Šárka Nečasová. The fundamental solution of linearized nonstationary Navier-Stokes equations of motion around a rotating and translating body. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 511-529. doi: 10.3934/dcds.2014.34.511 |
[6] |
Liang Zhao. New developments in using stochastic recipe for multi-compartment model: Inter-compartment traveling route, residence time, and exponential convolution expansion. Mathematical Biosciences & Engineering, 2009, 6 (3) : 663-682. doi: 10.3934/mbe.2009.6.663 |
[7] |
Guillaume Warnault. Regularity of the extremal solution for a biharmonic problem with general nonlinearity. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1709-1723. doi: 10.3934/cpaa.2009.8.1709 |
[8] |
Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873 |
[9] |
Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051 |
[10] |
Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 473-485. doi: 10.3934/dcdsb.2018032 |
[11] |
Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262 |
[12] |
Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185 |
[13] |
Priyanjana M. N. Dharmawardane. Decay property of regularity-loss type for quasi-linear hyperbolic systems of viscoelasticity. Conference Publications, 2013, 2013 (special) : 197-206. doi: 10.3934/proc.2013.2013.197 |
[14] |
Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1 |
[15] |
H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure & Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127 |
[16] |
Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227 |
[17] |
Nan Chen, Cheng Wang, Steven Wise. Global-in-time Gevrey regularity solution for a class of bistable gradient flows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1689-1711. doi: 10.3934/dcdsb.2016018 |
[18] |
Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447 |
[19] |
Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 |
[20] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]