• Previous Article
    Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay
  • DCDS-B Home
  • This Issue
  • Next Article
    A criterion for the existence of relaxation oscillations with applications to predator-prey systems and an epidemic model
April  2020, 25(4): 1279-1298. doi: 10.3934/dcdsb.2019220

On regularity of stochastic convolutions of functional linear differential equations with memory

a. 

School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China

b. 

Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK

The author is grateful to the Tianjin Thousand Talents Plan for its financial support

Received  April 2019 Published  September 2019

In this work, we consider the regularity property of stochastic convolutions for a class of abstract linear stochastic retarded functional differential equations with unbounded operator coefficients. We first establish some useful estimates on fundamental solutions which are time delay versions of those on $ C_0 $-semigroups. To this end, we develop a scheme of constructing the resolvent operators for the integrodifferential equations of Volterra type since the equation under investigation is of this type in each subinterval describing the segment of its solution. Then we apply these estimates to stochastic convolutions of our equations to obtain the desired regularity property.

Citation: Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220
References:
[1]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[3]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.  Google Scholar

[4]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert space, Osaka J. Math., 28 (1991), 347-365.   Google Scholar

[5]

J. JeongS. I. Nakagiri and H. Tanabe, Structural operators and semigroups associated with functional differential equations in Hilbert spaces, Osaka J. Math., 30 (1993), 365-395.   Google Scholar

[6]

J. W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.  doi: 10.1090/qam/295683.  Google Scholar

[7]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, , Applied Mathematical Sciences, Vol. 44. Springer Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[8]

J. Prüss, On resolvent operators for linear integrodifferential equations of Volterra type, J. Integral Equations, 5 (1983), 211-236.   Google Scholar

[9]

E. Sinestrari, On a class of retarded partial differential equations of Volterra type, Math. Z., 186 (1984), 223-246.  doi: 10.1007/BF01161806.  Google Scholar

[10]

E. Sinestrari, A noncompact differentiable semigroup arising from an abstract delay equation, C. R. Math. Rep. Acad. Sci. Canada., 6 (1984), 43-48.   Google Scholar

[11]

H. Tanabe, On fundamental solution of differential equation with time delay in Banach space, Proc. Japan Acad., 64 (1988), 131-134.  doi: 10.3792/pjaa.64.131.  Google Scholar

[12]

H. Tanabe, Fundamental solutions for linear retarded functional differential equations in Banach spaces, Funkcialaj Ekvacioj, 35 (1992), 149-177.   Google Scholar

show all references

References:
[1]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[2] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Second Edition, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2014.  doi: 10.1017/CBO9781107295513.  Google Scholar
[3]

G. Di BlasioK. Kunisch and E. Sinestrari, Stability for abstract linear functional differential equations, Israel J. Math., 50 (1985), 231-263.  doi: 10.1007/BF02761404.  Google Scholar

[4]

J. Jeong, Stabilizability of retarded functional differential equation in Hilbert space, Osaka J. Math., 28 (1991), 347-365.   Google Scholar

[5]

J. JeongS. I. Nakagiri and H. Tanabe, Structural operators and semigroups associated with functional differential equations in Hilbert spaces, Osaka J. Math., 30 (1993), 365-395.   Google Scholar

[6]

J. W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204.  doi: 10.1090/qam/295683.  Google Scholar

[7]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, , Applied Mathematical Sciences, Vol. 44. Springer Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[8]

J. Prüss, On resolvent operators for linear integrodifferential equations of Volterra type, J. Integral Equations, 5 (1983), 211-236.   Google Scholar

[9]

E. Sinestrari, On a class of retarded partial differential equations of Volterra type, Math. Z., 186 (1984), 223-246.  doi: 10.1007/BF01161806.  Google Scholar

[10]

E. Sinestrari, A noncompact differentiable semigroup arising from an abstract delay equation, C. R. Math. Rep. Acad. Sci. Canada., 6 (1984), 43-48.   Google Scholar

[11]

H. Tanabe, On fundamental solution of differential equation with time delay in Banach space, Proc. Japan Acad., 64 (1988), 131-134.  doi: 10.3792/pjaa.64.131.  Google Scholar

[12]

H. Tanabe, Fundamental solutions for linear retarded functional differential equations in Banach spaces, Funkcialaj Ekvacioj, 35 (1992), 149-177.   Google Scholar

[1]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[2]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[5]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[6]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (114)
  • HTML views (213)
  • Cited by (0)

Other articles
by authors

[Back to Top]