April  2020, 25(4): 1299-1316. doi: 10.3934/dcdsb.2019221

Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay

School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

* Corresponding author

Received  April 2019 Revised  June 2019 Published  September 2019

Fund Project: Ma is supported by NSF grant(11561064, 11761062), and partly supported by NWNU-LKQN-14-6.

We investigate the long-time behavior of solutions for the suspension bridge equation when the forcing term containing some hereditary characteristic. Existence of pullback attractor is shown by using the contractive function methods.

Citation: Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221
References:
[1]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[2]

T. CaraballoP. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn, 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[3]

J. García-LuengoP. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Commun. Pure Appl. Anal, 14 (2015), 1603-1621.  doi: 10.3934/cpaa.2015.14.1603.  Google Scholar

[4]

J. García-Luegngo and P. Marín-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl, 417 (2014), 80-95.  doi: 10.1016/j.jmaa.2014.03.026.  Google Scholar

[5]

A. Kh. Khanmamedov, Global attractors for a non-autonomous von Karman equations with nonlinear interior dissipation, Math. Anal. Appl, 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[6]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridge: Some new connections with nonlinear analysis, SIAM Rev, 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar

[7]

Q. Z. Ma and C. K. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246 (2009), 3755-3775.  doi: 10.1016/j.jde.2009.02.022.  Google Scholar

[8]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the coupled system of suspension bridge equations, J. Math. Anal. Appl, 308 (2005), 365-379.  doi: 10.1016/j.jmaa.2005.01.036.  Google Scholar

[9]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the suspension bridge equations, J. Sichuan University (Natural Science Bridge Edition), 43 (2006), 271-276.   Google Scholar

[10]

Q. Z. MaS. P. Wang and X. B. Chen, Uniform compact attractors for the coupled suspension bridge equations, Appl. Math. Comput, 217 (2011), 6604-6615.  doi: 10.1016/j.amc.2011.01.045.  Google Scholar

[11]

Q. Z. Ma and B. L. Wang, Existence of pullback attractors for the coupled suspension bridge equation, Electronic. J. Differential Equations, 2011 (2011), 1-10.   Google Scholar

[12]

Q. Z. Ma and L. Xu, Random attractors for the coupled suspension bridge equations with white noises, Appl. Math. Comput, 306 (2017), 38-48.  doi: 10.1016/j.amc.2017.02.019.  Google Scholar

[13]

Q. Z. Ma and L. Xu, Random attractors for the extensible suspension bridge equation with white noise, Comput. Appl. Math., 70 (2015), 2895-2903.  doi: 10.1016/j.camwa.2015.09.029.  Google Scholar

[14]

P. J. McKenna and W. Walter, Nonlinear oscillation in a suspension bridge, Arch. Ration. Mech. Appl. Sci, 98 (1987), 167-177.  doi: 10.1007/BF00251232.  Google Scholar

[15]

J. Y. Park and J. R. Kang, Pullback D-attractors for non-autonomous suspension bridge equations, Nonlinear Anal, 71 (2009), 4618-4623.  doi: 10.1016/j.na.2009.03.025.  Google Scholar

[16]

S. H. Park, Long-time behavior for suspension bridge equations with time delay, Z. Angew. Math. Phys., 69 (2018), 1-12.  doi: 10.1007/s00033-018-0934-9.  Google Scholar

[17]

S. H. Park, Long-time dynamics of a von Karman equation with time delay, Appl. Math. Lett., 75 (2018), 128-134.  doi: 10.1016/j.aml.2017.07.004.  Google Scholar

[18]

C. Y. Sun and K. X. Zhu, Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys, 56 (2015), 092703, 20 pp.  Google Scholar

[19]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics abd Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

C. K. ZhongQ. Z. Ma and C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442-454.  doi: 10.1016/j.na.2006.05.018.  Google Scholar

show all references

References:
[1]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal, 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[2]

T. CaraballoP. E. Kloeden and J. Real, Pullback and forward attractors for a damped wave equation with delays, Stoch. Dyn, 4 (2004), 405-423.  doi: 10.1142/S0219493704001139.  Google Scholar

[3]

J. García-LuengoP. Marín-Rubio and J. Real, Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays, Commun. Pure Appl. Anal, 14 (2015), 1603-1621.  doi: 10.3934/cpaa.2015.14.1603.  Google Scholar

[4]

J. García-Luegngo and P. Marín-Rubio, Reaction-diffusion equations with non-autonomous force in $H^{-1}$ and delays under measurability conditions on the driving delay term, J. Math. Anal. Appl, 417 (2014), 80-95.  doi: 10.1016/j.jmaa.2014.03.026.  Google Scholar

[5]

A. Kh. Khanmamedov, Global attractors for a non-autonomous von Karman equations with nonlinear interior dissipation, Math. Anal. Appl, 318 (2006), 92-101.  doi: 10.1016/j.jmaa.2005.05.031.  Google Scholar

[6]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridge: Some new connections with nonlinear analysis, SIAM Rev, 32 (1990), 537-578.  doi: 10.1137/1032120.  Google Scholar

[7]

Q. Z. Ma and C. K. Zhong, Existence of strong solutions and global attractors for the coupled suspension bridge equations, J. Differential Equations, 246 (2009), 3755-3775.  doi: 10.1016/j.jde.2009.02.022.  Google Scholar

[8]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the coupled system of suspension bridge equations, J. Math. Anal. Appl, 308 (2005), 365-379.  doi: 10.1016/j.jmaa.2005.01.036.  Google Scholar

[9]

Q. Z. Ma and C. K. Zhong, Existence of global attractors for the suspension bridge equations, J. Sichuan University (Natural Science Bridge Edition), 43 (2006), 271-276.   Google Scholar

[10]

Q. Z. MaS. P. Wang and X. B. Chen, Uniform compact attractors for the coupled suspension bridge equations, Appl. Math. Comput, 217 (2011), 6604-6615.  doi: 10.1016/j.amc.2011.01.045.  Google Scholar

[11]

Q. Z. Ma and B. L. Wang, Existence of pullback attractors for the coupled suspension bridge equation, Electronic. J. Differential Equations, 2011 (2011), 1-10.   Google Scholar

[12]

Q. Z. Ma and L. Xu, Random attractors for the coupled suspension bridge equations with white noises, Appl. Math. Comput, 306 (2017), 38-48.  doi: 10.1016/j.amc.2017.02.019.  Google Scholar

[13]

Q. Z. Ma and L. Xu, Random attractors for the extensible suspension bridge equation with white noise, Comput. Appl. Math., 70 (2015), 2895-2903.  doi: 10.1016/j.camwa.2015.09.029.  Google Scholar

[14]

P. J. McKenna and W. Walter, Nonlinear oscillation in a suspension bridge, Arch. Ration. Mech. Appl. Sci, 98 (1987), 167-177.  doi: 10.1007/BF00251232.  Google Scholar

[15]

J. Y. Park and J. R. Kang, Pullback D-attractors for non-autonomous suspension bridge equations, Nonlinear Anal, 71 (2009), 4618-4623.  doi: 10.1016/j.na.2009.03.025.  Google Scholar

[16]

S. H. Park, Long-time behavior for suspension bridge equations with time delay, Z. Angew. Math. Phys., 69 (2018), 1-12.  doi: 10.1007/s00033-018-0934-9.  Google Scholar

[17]

S. H. Park, Long-time dynamics of a von Karman equation with time delay, Appl. Math. Lett., 75 (2018), 128-134.  doi: 10.1016/j.aml.2017.07.004.  Google Scholar

[18]

C. Y. Sun and K. X. Zhu, Pullback attractors for nonclassical diffusion equations with delays, J. Math. Phys, 56 (2015), 092703, 20 pp.  Google Scholar

[19]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics abd Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

C. K. ZhongQ. Z. Ma and C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442-454.  doi: 10.1016/j.na.2006.05.018.  Google Scholar

[1]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[2]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[3]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[6]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[17]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (168)
  • HTML views (249)
  • Cited by (0)

Other articles
by authors

[Back to Top]