doi: 10.3934/dcdsb.2019225

Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system

1. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France

2. 

MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France

3. 

Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

* Corresponding author: Jean-Baptiste Burie

Received  January 2019 Revised  May 2019 Published  September 2019

This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. Using the variance of the dispersion in the phenotype trait space as a small parameter we provide a complete picture of the dynamical behaviour of the solutions of the problem. We show that the dynamics exhibits two main and long regimes – those durations are estimated – before the solution finally reaches its long time configuration, the endemic equilibrium. The analysis provided in this work rigorously explains and justifies the complex behaviour observed through numerical simulations of the system.

Citation: Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019225
References:
[1]

M. Alfaro and M. Veruete, Evolutionary branching via replicator mutator equations, Journal of Dynamics and Differential Equations, (2018), 1–24. doi: 10.1007/s10884-018-9692-9.  Google Scholar

[2]

O. BonnefonJ. Coville and G. Legendre, Concentration phenomenon in some non-local equation, Discrete Continuous Dynam. Systems - B, 22 (2017), 763-781.  doi: 10.3934/dcdsb.2017037.  Google Scholar

[3]

J.-B. Burie, R. Djidjou-Demasse and A. Ducrot, Asymptotic and transient behaviour for a nonlocal problem arising in population genetics, European Journal of Applied Mathematics, 2018, 1–27. doi: 10.1017/S0956792518000487.  Google Scholar

[4]

À. CalsinaS. CuadradoL. Desvillettes and G. Raoul, Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc. Math. Roy. Soc. Edinb., 143 (2013), 1123-1146.  doi: 10.1017/S0308210510001629.  Google Scholar

[5]

À. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1091-1117.  doi: 10.1142/S0218202505000637.  Google Scholar

[6]

S. Cuadrado, Equilibria of a predator prey model of phenotype evolution, J. Math. Anal. Appl., 354 (2009), 286-294.  doi: 10.1016/j.jmaa.2009.01.002.  Google Scholar

[7]

T. Day and S. Gandon, Applying population-genetic models in theoretical evolutionary epidemiology, Ecology Letters, 10 (2007), 876-888.  doi: 10.1111/j.1461-0248.2007.01091.x.  Google Scholar

[8]

T. Day and S. R. Proulx, A general theory for the evolutionary dynamics of virulence, The American Naturalist, 163 (2004), E40–E63. doi: 10.1086/382548.  Google Scholar

[9]

O. DiekmannP. E. JabinS. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.  doi: 10.1016/j.tpb.2004.12.003.  Google Scholar

[10]

R. Djidjou-DemasseA. Ducrot and F. Fabre, Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens, Mathematical Models and Methods in Applied Sciences, 27 (2017), 385-426.  doi: 10.1142/S0218202517500051.  Google Scholar

[11]

F. FabreE. RousseauL. Mailleret and B. Moury, Durable strategies to deploy plant resistance in agricultural landscapes, New Phytologist, 193 (2012), 1064-1075.  doi: 10.1111/j.1469-8137.2011.04019.x.  Google Scholar

[12]

F. FabreE. RousseauL. Mailleret and B. Moury, Epidemiological and evolutionary management of plant resistance: optimizing the deployment of cultivar mixtures in time and space in agricultural landscapes, Evol. Appl., 8 (2015), 919-932.  doi: 10.1111/eva.12304.  Google Scholar

[13]

S. A. GeritzJ. A. MetzÉ. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027.  doi: 10.1103/PhysRevLett.78.2024.  Google Scholar

[14]

Q. Griette, Singular measure traveling waves in an epidemiological model with continuous phenotypes, Transactions of the American Mathematical Society, 371 (2019), 4411-4458.  doi: 10.1090/tran/7700.  Google Scholar

[15]

G. L. IaconoF. van den Bosch and N. Paveley, The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance, J. Theo. Biol., 304 (2012), 152-163.  doi: 10.1016/j.jtbi.2012.03.033.  Google Scholar

[16]

C. Lannou, Variation and selection of quantitative traits in plant pathogens, Annu. Rev. Phytopathol., 50 (2012), 319-338.  doi: 10.1146/annurev-phyto-081211-173031.  Google Scholar

[17]

S. Lion and S. Gandon, Spatial evolutionary epidemiology of spreading epidemics, Proc. R. Soc. B, 283 (2016). doi: 10.1098/rspb.2016.1170.  Google Scholar

[18]

J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction, in Stochastic and Spatial Structures of Dynamical System (eds. S. J. van Strien, S. M. Verduyn Lunel), North-Holland, Amsterdam, 45 (1996), 183–231.  Google Scholar

[19]

P. Meyer-Nieberg, Banach Lattices, Springer-Verlag Berlin Heidelberg, 1991. doi: 10.1007/978-3-642-76724-1.  Google Scholar

[20]

S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative meso-evolution: Theory and numerics, in The Mathematics of Darwins Legacy, Springer Basel, Basel, (2011), 159–174. doi: 10.1007/978-3-0348-0122-5_9.  Google Scholar

[21]

S. MirrahimiB. Perthame and J. Y. Wakano, Evolution of species trait through resource competition, J. Math. Biol., 64 (2012), 1189-1223.  doi: 10.1007/s00285-011-0447-z.  Google Scholar

[22]

S. NordmannB. Perthame and C. Taing, Dynamics of concentration in a population model structured by age and a phenotypical trait, Acta Appl. Math., 155 (2018), 197-225.  doi: 10.1007/s10440-017-0151-0.  Google Scholar

[23]

M. Zerner, Quelques propriétés spectrales des opérateurs positifs, Journal of Functional Analysis, 72 (1987), 381-417.  doi: 10.1016/0022-1236(87)90094-2.  Google Scholar

[24]

J. ZhanP. H. ThrallJ. PapaïL. Xie and J. J. Burdon, Playing on a pathogen's weakness: Using evolution to guide sustainable plant disease control strategies, Annu. Rev. Phytopathol., 53 (2015), 19-43.  doi: 10.1146/annurev-phyto-080614-120040.  Google Scholar

show all references

References:
[1]

M. Alfaro and M. Veruete, Evolutionary branching via replicator mutator equations, Journal of Dynamics and Differential Equations, (2018), 1–24. doi: 10.1007/s10884-018-9692-9.  Google Scholar

[2]

O. BonnefonJ. Coville and G. Legendre, Concentration phenomenon in some non-local equation, Discrete Continuous Dynam. Systems - B, 22 (2017), 763-781.  doi: 10.3934/dcdsb.2017037.  Google Scholar

[3]

J.-B. Burie, R. Djidjou-Demasse and A. Ducrot, Asymptotic and transient behaviour for a nonlocal problem arising in population genetics, European Journal of Applied Mathematics, 2018, 1–27. doi: 10.1017/S0956792518000487.  Google Scholar

[4]

À. CalsinaS. CuadradoL. Desvillettes and G. Raoul, Asymptotics of steady states of a selection-mutation equation for small mutation rate, Proc. Math. Roy. Soc. Edinb., 143 (2013), 1123-1146.  doi: 10.1017/S0308210510001629.  Google Scholar

[5]

À. Calsina and S. Cuadrado, Stationary solutions of a selection mutation model: The pure mutation case, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1091-1117.  doi: 10.1142/S0218202505000637.  Google Scholar

[6]

S. Cuadrado, Equilibria of a predator prey model of phenotype evolution, J. Math. Anal. Appl., 354 (2009), 286-294.  doi: 10.1016/j.jmaa.2009.01.002.  Google Scholar

[7]

T. Day and S. Gandon, Applying population-genetic models in theoretical evolutionary epidemiology, Ecology Letters, 10 (2007), 876-888.  doi: 10.1111/j.1461-0248.2007.01091.x.  Google Scholar

[8]

T. Day and S. R. Proulx, A general theory for the evolutionary dynamics of virulence, The American Naturalist, 163 (2004), E40–E63. doi: 10.1086/382548.  Google Scholar

[9]

O. DiekmannP. E. JabinS. Mischler and B. Perthame, The dynamics of adaptation: An illuminating example and a Hamilton-Jacobi approach, Theor. Popul. Biol., 67 (2005), 257-271.  doi: 10.1016/j.tpb.2004.12.003.  Google Scholar

[10]

R. Djidjou-DemasseA. Ducrot and F. Fabre, Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens, Mathematical Models and Methods in Applied Sciences, 27 (2017), 385-426.  doi: 10.1142/S0218202517500051.  Google Scholar

[11]

F. FabreE. RousseauL. Mailleret and B. Moury, Durable strategies to deploy plant resistance in agricultural landscapes, New Phytologist, 193 (2012), 1064-1075.  doi: 10.1111/j.1469-8137.2011.04019.x.  Google Scholar

[12]

F. FabreE. RousseauL. Mailleret and B. Moury, Epidemiological and evolutionary management of plant resistance: optimizing the deployment of cultivar mixtures in time and space in agricultural landscapes, Evol. Appl., 8 (2015), 919-932.  doi: 10.1111/eva.12304.  Google Scholar

[13]

S. A. GeritzJ. A. MetzÉ. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78 (1997), 2024-2027.  doi: 10.1103/PhysRevLett.78.2024.  Google Scholar

[14]

Q. Griette, Singular measure traveling waves in an epidemiological model with continuous phenotypes, Transactions of the American Mathematical Society, 371 (2019), 4411-4458.  doi: 10.1090/tran/7700.  Google Scholar

[15]

G. L. IaconoF. van den Bosch and N. Paveley, The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance, J. Theo. Biol., 304 (2012), 152-163.  doi: 10.1016/j.jtbi.2012.03.033.  Google Scholar

[16]

C. Lannou, Variation and selection of quantitative traits in plant pathogens, Annu. Rev. Phytopathol., 50 (2012), 319-338.  doi: 10.1146/annurev-phyto-081211-173031.  Google Scholar

[17]

S. Lion and S. Gandon, Spatial evolutionary epidemiology of spreading epidemics, Proc. R. Soc. B, 283 (2016). doi: 10.1098/rspb.2016.1170.  Google Scholar

[18]

J. A. J. Metz, S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden, Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction, in Stochastic and Spatial Structures of Dynamical System (eds. S. J. van Strien, S. M. Verduyn Lunel), North-Holland, Amsterdam, 45 (1996), 183–231.  Google Scholar

[19]

P. Meyer-Nieberg, Banach Lattices, Springer-Verlag Berlin Heidelberg, 1991. doi: 10.1007/978-3-642-76724-1.  Google Scholar

[20]

S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative meso-evolution: Theory and numerics, in The Mathematics of Darwins Legacy, Springer Basel, Basel, (2011), 159–174. doi: 10.1007/978-3-0348-0122-5_9.  Google Scholar

[21]

S. MirrahimiB. Perthame and J. Y. Wakano, Evolution of species trait through resource competition, J. Math. Biol., 64 (2012), 1189-1223.  doi: 10.1007/s00285-011-0447-z.  Google Scholar

[22]

S. NordmannB. Perthame and C. Taing, Dynamics of concentration in a population model structured by age and a phenotypical trait, Acta Appl. Math., 155 (2018), 197-225.  doi: 10.1007/s10440-017-0151-0.  Google Scholar

[23]

M. Zerner, Quelques propriétés spectrales des opérateurs positifs, Journal of Functional Analysis, 72 (1987), 381-417.  doi: 10.1016/0022-1236(87)90094-2.  Google Scholar

[24]

J. ZhanP. H. ThrallJ. PapaïL. Xie and J. J. Burdon, Playing on a pathogen's weakness: Using evolution to guide sustainable plant disease control strategies, Annu. Rev. Phytopathol., 53 (2015), 19-43.  doi: 10.1146/annurev-phyto-080614-120040.  Google Scholar

Figure 1.  Fitness function $ \Psi $ and density of infected population at time $ t = 0 $. (Left) Time evolution of the infected population $ \sqrt{\varepsilon} v(t, x) $ for $ \varepsilon = 0.02 $. (Right)
Figure 2.  Slow convergence of the infected population at $ x = x_1 $ and $ x = x_2 $ towards the asymptotic configuration for $ \varepsilon = 0.02\times2^{1/3} $ (Left) and $ \varepsilon = 0.02 $ (Right)
Figure 3.  Linear dependence in log-log scale with respect to $ \varepsilon $ of the value of the "coexistence time" $ t_{\varepsilon, c} $ for which $ v(t_{\varepsilon, c}, x_1) = v(t_{\varepsilon, c}, x_2) $. The slope of the corresponding line is approximatively $ -3.4 $
[1]

Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663

[2]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[3]

Étienne Bernard, Marie Doumic, Pierre Gabriel. Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinetic & Related Models, 2019, 12 (3) : 551-571. doi: 10.3934/krm.2019022

[4]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[5]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[6]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[7]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[8]

Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks. Networks & Heterogeneous Media, 2014, 9 (2) : 197-216. doi: 10.3934/nhm.2014.9.197

[9]

Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165

[10]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[11]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[12]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[13]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[14]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-13. doi: 10.3934/dcdss.2020088

[15]

Tomás Caraballo, Antonio M. Márquez-Durán, Rivero Felipe. Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1817-1833. doi: 10.3934/dcdsb.2017108

[16]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[17]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[18]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[19]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[20]

Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (24)
  • HTML views (123)
  • Cited by (0)

[Back to Top]