# American Institute of Mathematical Sciences

June  2020, 25(6): 2223-2243. doi: 10.3934/dcdsb.2019225

## Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system

 1 Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France 2 MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France 3 Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

* Corresponding author: Jean-Baptiste Burie

Received  January 2019 Revised  May 2019 Published  September 2019

This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. Using the variance of the dispersion in the phenotype trait space as a small parameter we provide a complete picture of the dynamical behaviour of the solutions of the problem. We show that the dynamics exhibits two main and long regimes – those durations are estimated – before the solution finally reaches its long time configuration, the endemic equilibrium. The analysis provided in this work rigorously explains and justifies the complex behaviour observed through numerical simulations of the system.

Citation: Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2223-2243. doi: 10.3934/dcdsb.2019225
##### References:

show all references

##### References:
Fitness function $\Psi$ and density of infected population at time $t = 0$. (Left) Time evolution of the infected population $\sqrt{\varepsilon} v(t, x)$ for $\varepsilon = 0.02$. (Right)
Slow convergence of the infected population at $x = x_1$ and $x = x_2$ towards the asymptotic configuration for $\varepsilon = 0.02\times2^{1/3}$ (Left) and $\varepsilon = 0.02$ (Right)
Linear dependence in log-log scale with respect to $\varepsilon$ of the value of the "coexistence time" $t_{\varepsilon, c}$ for which $v(t_{\varepsilon, c}, x_1) = v(t_{\varepsilon, c}, x_2)$. The slope of the corresponding line is approximatively $-3.4$
 [1] Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 663-683. doi: 10.3934/dcds.1999.5.663 [2] Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393 [3] Étienne Bernard, Marie Doumic, Pierre Gabriel. Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts. Kinetic & Related Models, 2019, 12 (3) : 551-571. doi: 10.3934/krm.2019022 [4] Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575 [5] Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439 [6] Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927 [7] Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019 [8] Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks. Networks & Heterogeneous Media, 2014, 9 (2) : 197-216. doi: 10.3934/nhm.2014.9.197 [9] Kin Ming Hui. Collasping behaviour of a singular diffusion equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2165-2185. doi: 10.3934/dcds.2012.32.2165 [10] Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1 [11] Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206 [12] María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure & Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157 [13] Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure & Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511 [14] Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088 [15] Tomás Caraballo, Antonio M. Márquez-Durán, Rivero Felipe. Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1817-1833. doi: 10.3934/dcdsb.2017108 [16] Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265 [17] Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 [18] Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003 [19] Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567 [20] Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

2018 Impact Factor: 1.008

## Tools

Article outline

Figures and Tables