
-
Previous Article
Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions
- DCDS-B Home
- This Issue
-
Next Article
Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system
Global dynamics of an age-structured model with relapse
1. | Laboratoire d'Analyse Non linéaire et Mathématiques Appliquées, Département de Mathématiques, Université Aboubekr Belkaïd Tlemcen, 13000 Tlemcen, Algeria |
2. | Institut de Mathématiques de Bordeaux, Université de Bordeaux, 33000, Bordeaux, France |
The aim of this paper is to study a general class of $ SIRI $ age infection structured model where infectivity depends on the age since infection and where some individuals from the $ R $ class, also called quarantaine class in this work, can return to the infectiousness class after a while. Using classical technics we compute a basic reproductive number $ R_0 $ and show that the disease dies out when $ R_0 < 1 $ and persists if $ R_0 > 1 $. Some Lyapunov suitable functions are derived to prove global stability for the disease free equilibrium (DFE) when $ R_0 < 1 $ and for the endemic equilibrium (EE) when $ R_0 > 1 $. Using numerical results we show that the non homogeneous infectivity combined with the feedback to the infectiousness class of a part of the quarantaine population modifies drastically the behavior of the epidemic.
References:
[1] |
B. Ainseba, Z. Feng, M. Iannelli and F. A. Milner,
Control Strategies for TB Epidemics, SIAM Journal on Applied Mathematics, 77 (2017), 82-107.
doi: 10.1137/15M1048719. |
[2] |
B. E. Ainseba and M. Iannelli,
Optimal screening in structured SIR epidemics, Math. Modelling of Natural Phenomena, 7 (2012), 12-27.
doi: 10.1051/mmnp/20127302. |
[3] |
S. Bentout and T. M. Touaoula,
Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl, 434 (2016), 1211-1239.
doi: 10.1016/j.jmaa.2015.09.066. |
[4] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[5] |
A. Chekroun, M. N. Frioui, T. Kuniya and T. M. Touaoula,
Global stability of an age-structured epidemic model with general Lyapunov functional, Math. Biosci. Eng., 16 (2019), 1525-1553.
doi: 10.3934/mbe.2019073. |
[6] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, UK, 2000. |
[7] |
N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publishers, New York, 1971. |
[8] |
Z. Feng and H. R. Thieme,
Endemic Models With Arbitrarily Distributed Periods of Infection I: Fundamental Properties of The Model, SIAM J. APPL. Math., 61 (2000), 803-833.
doi: 10.1137/S0036139998347834. |
[9] |
Z. Feng and H. R. Thieme,
Endemic models with arbitrarily distributed periods of infection II: Fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61 (2000), 983-1012.
doi: 10.1137/S0036139998347846. |
[10] |
M. N. Frioui, T. M. Touaoula and S. E. Miri,
Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, J. Appl. Math. Comput, 58 (2018), 47-73.
doi: 10.1007/s12190-017-1133-0. |
[11] |
J. Hale and P. Waltman,
Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
doi: 10.1137/0520025. |
[12] |
A. Korobeinikov,
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull Math. Biol., 68 (2006), 615-626.
doi: 10.1007/s11538-005-9037-9. |
[13] |
A. Korobeinikov,
Global properties of infectious disease models with nonlinear incidence, Bull Math. Biol., 69 (2007), 1871-1886.
doi: 10.1007/s11538-007-9196-y. |
[14] |
A. Korobeinikov and P. K. Maini,
Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128.
|
[15] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[16] |
P. Magal, C. C. McCluskey and G. F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Anal, 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[17] |
C. C. McCluskey,
Complete global stability for a SIR epidemic model with delay-distributed or discrete, Nonlinear Anal, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[18] |
C. C. McCluskey,
Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
doi: 10.3934/mbe.2009.6.603. |
[19] |
C. C. McCluskey,
Global stability for an SIR epidemic model with delay and general nonlinear incidence, Math. Biosci. Eng., 7 (2010), 837-850.
doi: 10.3934/mbe.2010.7.837. |
[20] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118. American Mathematical Society, Providence, RI, 2011. |
[21] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003. |
[22] |
H. R. Thieme,
Uniform persistence and permanence for nonautonomus semiflows in population biology, Math. Biosci., 166 (2000), 173-201.
doi: 10.1016/S0025-5564(00)00018-3. |
[23] |
H. R. Thieme and C. Castillo-Chavez,
How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS, SIAM. J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[24] |
H. R. Thieme,
Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011), 3772-3801.
doi: 10.1016/j.jde.2011.01.007. |
show all references
References:
[1] |
B. Ainseba, Z. Feng, M. Iannelli and F. A. Milner,
Control Strategies for TB Epidemics, SIAM Journal on Applied Mathematics, 77 (2017), 82-107.
doi: 10.1137/15M1048719. |
[2] |
B. E. Ainseba and M. Iannelli,
Optimal screening in structured SIR epidemics, Math. Modelling of Natural Phenomena, 7 (2012), 12-27.
doi: 10.1051/mmnp/20127302. |
[3] |
S. Bentout and T. M. Touaoula,
Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl, 434 (2016), 1211-1239.
doi: 10.1016/j.jmaa.2015.09.066. |
[4] |
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9. |
[5] |
A. Chekroun, M. N. Frioui, T. Kuniya and T. M. Touaoula,
Global stability of an age-structured epidemic model with general Lyapunov functional, Math. Biosci. Eng., 16 (2019), 1525-1553.
doi: 10.3934/mbe.2019073. |
[6] |
O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, Chichester, UK, 2000. |
[7] |
N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publishers, New York, 1971. |
[8] |
Z. Feng and H. R. Thieme,
Endemic Models With Arbitrarily Distributed Periods of Infection I: Fundamental Properties of The Model, SIAM J. APPL. Math., 61 (2000), 803-833.
doi: 10.1137/S0036139998347834. |
[9] |
Z. Feng and H. R. Thieme,
Endemic models with arbitrarily distributed periods of infection II: Fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61 (2000), 983-1012.
doi: 10.1137/S0036139998347846. |
[10] |
M. N. Frioui, T. M. Touaoula and S. E. Miri,
Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response, J. Appl. Math. Comput, 58 (2018), 47-73.
doi: 10.1007/s12190-017-1133-0. |
[11] |
J. Hale and P. Waltman,
Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
doi: 10.1137/0520025. |
[12] |
A. Korobeinikov,
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull Math. Biol., 68 (2006), 615-626.
doi: 10.1007/s11538-005-9037-9. |
[13] |
A. Korobeinikov,
Global properties of infectious disease models with nonlinear incidence, Bull Math. Biol., 69 (2007), 1871-1886.
doi: 10.1007/s11538-007-9196-y. |
[14] |
A. Korobeinikov and P. K. Maini,
Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128.
|
[15] |
P. Magal and X.-Q. Zhao,
Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275.
doi: 10.1137/S0036141003439173. |
[16] |
P. Magal, C. C. McCluskey and G. F. Webb,
Lyapunov functional and global asymptotic stability for an infection-age model, Applicable Anal, 89 (2010), 1109-1140.
doi: 10.1080/00036810903208122. |
[17] |
C. C. McCluskey,
Complete global stability for a SIR epidemic model with delay-distributed or discrete, Nonlinear Anal, 11 (2010), 55-59.
doi: 10.1016/j.nonrwa.2008.10.014. |
[18] |
C. C. McCluskey,
Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
doi: 10.3934/mbe.2009.6.603. |
[19] |
C. C. McCluskey,
Global stability for an SIR epidemic model with delay and general nonlinear incidence, Math. Biosci. Eng., 7 (2010), 837-850.
doi: 10.3934/mbe.2010.7.837. |
[20] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118. American Mathematical Society, Providence, RI, 2011. |
[21] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton 2003. |
[22] |
H. R. Thieme,
Uniform persistence and permanence for nonautonomus semiflows in population biology, Math. Biosci., 166 (2000), 173-201.
doi: 10.1016/S0025-5564(00)00018-3. |
[23] |
H. R. Thieme and C. Castillo-Chavez,
How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS, SIAM. J. Appl. Math., 53 (1993), 1447-1479.
doi: 10.1137/0153068. |
[24] |
H. R. Thieme,
Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators, J. Differential Equations, 250 (2011), 3772-3801.
doi: 10.1016/j.jde.2011.01.007. |












[1] |
Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 |
[2] |
C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837 |
[3] |
Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57 |
[4] |
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859 |
[5] |
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449 |
[6] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with generalized nonlinear incidence and vaccination age. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 977-996. doi: 10.3934/dcdsb.2016.21.977 |
[7] |
Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 |
[8] |
Carlota Rebelo, Alessandro Margheri, Nicolas Bacaër. Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1155-1170. doi: 10.3934/dcdsb.2014.19.1155 |
[9] |
Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060 |
[10] |
Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016 |
[11] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[12] |
Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207 |
[13] |
Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643 |
[14] |
Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971 |
[15] |
Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134 |
[16] |
Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61 |
[17] |
Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002 |
[18] |
Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 |
[19] |
Jianquan Li, Yicang Zhou, Jianhong Wu, Zhien Ma. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 161-173. doi: 10.3934/dcdsb.2007.8.161 |
[20] |
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]