doi: 10.3934/dcdsb.2019228

Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms

1. 

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan

2. 

Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, Wisconsin 53706, USA

* Corresponding author: Yoshikazu Giga

Received  June 2019 Revised  June 2019 Published  September 2019

We study a level-set mean curvature flow equation with driving and source terms, and establish convergence results on the asymptotic behavior of solutions as time goes to infinity under some additional assumptions. We also study the associated stationary problem in details in a particular case, and establish Alexandrov's theorem in two dimensions in the viscosity sense, which is of independent interest.

Citation: Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019228
References:
[1]

G. BarlesO. LeyT.-T. Nguyen and T.V. Phan, Large time Behavior of unbounded solutions of first-order Hamilton-Jacobi in $\mathbb{R}^N$, Asymptot. Anal., 112 (2019), 1-22.  doi: 10.3233/ASY-181488.  Google Scholar

[2]

G. Barles and P.E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.  doi: 10.1137/S0036141099350869.  Google Scholar

[3]

F. CagnettiD. GomesH. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 183-200.  doi: 10.1016/j.anihpc.2013.10.005.  Google Scholar

[4]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing, Comm. Partial Differential Equations, 38 (2013), 780-801.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[5]

Y.G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[6]

M.G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.  doi: 10.1137/050621955.  Google Scholar

[8]

L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[9]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[10]

Y. Giga, Surface Evolution Equations. A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser, Basel-Boston-Berlin, 2006. doi: 10.1007/3-7643-7391-1.  Google Scholar

[11]

Y. Giga, On large time behavior of growth by birth and spread, Proc. Int. Cong. of Math. 2018 Rio de Janeiro, 3 (2018), 2287-2310.   Google Scholar

[12]

M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.  doi: 10.1007/s002050100154.  Google Scholar

[13]

Y. Giga and N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations, 38 (2013), 199-243.  doi: 10.1080/03605302.2012.739671.  Google Scholar

[14]

Y. GigaH. Mitake and H.V. Tran, On asymptotic speed of solutions to level-set mean curvature flow equations with driving and source terms, SIAM J. Math. Anal., 48 (2016), 3515-3546.  doi: 10.1137/15M1052755.  Google Scholar

[15]

Y. Giga, H. Mitake, T. Ohtsuka and H. V. Tran, Existence of asymptotic speed of solutions to birth and spread type nonlinear partial differential equations, to appear in Indiana Univ. Math. J., https://www.iumj.indiana.edu/IUMJ/Preprints/8305.pdf. Google Scholar

[16]

Y. GigaM. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition, J. Differential Equations, 154 (1999), 107-131.  doi: 10.1006/jdeq.1998.3569.  Google Scholar

[17]

Y. GigaH.V. Tran and L.J. Zhang, On obstacle problem for mean curvature flow with driving force, Geom. Flows, 4 (2019), 9-29.   Google Scholar

[18]

N. Hamamuki, On large time behavior of Hamilton-Jacobi equations with discontinuous source terms, Nonlinear Analysis in Interdisciplinary Sciences – Modellings, Theory and Simulations, 83–112, GAKUTO Internat. Ser. Math. Sci. Appl., 36, Gakkotosho, Tokyo, 2013.  Google Scholar

[19]

N. Hamamuki and K. Misu, Asymptotic shape of solutions to the mean curvature flow equation with discontinuous source terms, work in progress. Google Scholar

[20]

N. Ichihara and H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, Arch. Ration. Mech. Anal., 194 (2009), 383-419.  doi: 10.1007/s00205-008-0170-0.  Google Scholar

[21]

H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean $n$ space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 231-266.  doi: 10.1016/j.anihpc.2006.09.002.  Google Scholar

[22]

N. Q. Le, H. Mitake and H. V. Tran, Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations, Lecture Notes in Mathematics, 2183, Springer, Cham, 2017. doi: 10.1007/978-3-319-54208-9.  Google Scholar

[23]

H. Mitake and H.V. Tran, On uniqueness sets of additive eigenvalue problems and applications, Proc. Amer. Math. Soc., 146 (2018), 4813-4822.  doi: 10.1090/proc/14152.  Google Scholar

[24]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.  doi: 10.1080/03605309908821451.  Google Scholar

[25]

L. J. Zhang, On curvature flow with driving force starting as singular initial curve in the plane, to appear in J. Geom. Anal. Google Scholar

show all references

References:
[1]

G. BarlesO. LeyT.-T. Nguyen and T.V. Phan, Large time Behavior of unbounded solutions of first-order Hamilton-Jacobi in $\mathbb{R}^N$, Asymptot. Anal., 112 (2019), 1-22.  doi: 10.3233/ASY-181488.  Google Scholar

[2]

G. Barles and P.E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 31 (2000), 925-939.  doi: 10.1137/S0036141099350869.  Google Scholar

[3]

F. CagnettiD. GomesH. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 183-200.  doi: 10.1016/j.anihpc.2013.10.005.  Google Scholar

[4]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing, Comm. Partial Differential Equations, 38 (2013), 780-801.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[5]

Y.G. ChenY. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33 (1991), 749-786.  doi: 10.4310/jdg/1214446564.  Google Scholar

[6]

M.G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[7]

A. Davini and A. Siconolfi, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal., 38 (2006), 478-502.  doi: 10.1137/050621955.  Google Scholar

[8]

L.C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom., 33 (1991), 635-681.  doi: 10.4310/jdg/1214446559.  Google Scholar

[9]

A. Fathi, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.  doi: 10.1016/S0764-4442(98)80144-4.  Google Scholar

[10]

Y. Giga, Surface Evolution Equations. A Level Set Approach, Monographs in Mathematics, 99. Birkhäuser, Basel-Boston-Berlin, 2006. doi: 10.1007/3-7643-7391-1.  Google Scholar

[11]

Y. Giga, On large time behavior of growth by birth and spread, Proc. Int. Cong. of Math. 2018 Rio de Janeiro, 3 (2018), 2287-2310.   Google Scholar

[12]

M.-H. Giga and Y. Giga, Generalized motion by nonlocal curvature in the plane, Arch. Ration. Mech. Anal., 159 (2001), 295-333.  doi: 10.1007/s002050100154.  Google Scholar

[13]

Y. Giga and N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations, 38 (2013), 199-243.  doi: 10.1080/03605302.2012.739671.  Google Scholar

[14]

Y. GigaH. Mitake and H.V. Tran, On asymptotic speed of solutions to level-set mean curvature flow equations with driving and source terms, SIAM J. Math. Anal., 48 (2016), 3515-3546.  doi: 10.1137/15M1052755.  Google Scholar

[15]

Y. Giga, H. Mitake, T. Ohtsuka and H. V. Tran, Existence of asymptotic speed of solutions to birth and spread type nonlinear partial differential equations, to appear in Indiana Univ. Math. J., https://www.iumj.indiana.edu/IUMJ/Preprints/8305.pdf. Google Scholar

[16]

Y. GigaM. Ohnuma and M.-H. Sato, On the strong maximum principle and the large time behavior of generalized mean curvature flow with the Neumann boundary condition, J. Differential Equations, 154 (1999), 107-131.  doi: 10.1006/jdeq.1998.3569.  Google Scholar

[17]

Y. GigaH.V. Tran and L.J. Zhang, On obstacle problem for mean curvature flow with driving force, Geom. Flows, 4 (2019), 9-29.   Google Scholar

[18]

N. Hamamuki, On large time behavior of Hamilton-Jacobi equations with discontinuous source terms, Nonlinear Analysis in Interdisciplinary Sciences – Modellings, Theory and Simulations, 83–112, GAKUTO Internat. Ser. Math. Sci. Appl., 36, Gakkotosho, Tokyo, 2013.  Google Scholar

[19]

N. Hamamuki and K. Misu, Asymptotic shape of solutions to the mean curvature flow equation with discontinuous source terms, work in progress. Google Scholar

[20]

N. Ichihara and H. Ishii, Long-time behavior of solutions of Hamilton-Jacobi equations with convex and coercive Hamiltonians, Arch. Ration. Mech. Anal., 194 (2009), 383-419.  doi: 10.1007/s00205-008-0170-0.  Google Scholar

[21]

H. Ishii, Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean $n$ space, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 231-266.  doi: 10.1016/j.anihpc.2006.09.002.  Google Scholar

[22]

N. Q. Le, H. Mitake and H. V. Tran, Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations, Lecture Notes in Mathematics, 2183, Springer, Cham, 2017. doi: 10.1007/978-3-319-54208-9.  Google Scholar

[23]

H. Mitake and H.V. Tran, On uniqueness sets of additive eigenvalue problems and applications, Proc. Amer. Math. Soc., 146 (2018), 4813-4822.  doi: 10.1090/proc/14152.  Google Scholar

[24]

G. Namah and J.-M. Roquejoffre, Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations, Comm. Partial Differential Equations, 24 (1999), 883-893.  doi: 10.1080/03605309908821451.  Google Scholar

[25]

L. J. Zhang, On curvature flow with driving force starting as singular initial curve in the plane, to appear in J. Geom. Anal. Google Scholar

Figure 1.  $ U $ and semicircles of radii $ 1 $
[1]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-15. doi: 10.3934/dcds.2019229

[2]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[3]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[4]

Yannan Liu, Hongjie Ju. Non-collapsing for a fully nonlinear inverse curvature flow. Communications on Pure & Applied Analysis, 2017, 16 (3) : 945-952. doi: 10.3934/cpaa.2017045

[5]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[6]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

[7]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[8]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[9]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[10]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[11]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[12]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[13]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[14]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[15]

Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41

[16]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[17]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[18]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[19]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[20]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]