April  2020, 25(4): 1345-1360. doi: 10.3934/dcdsb.2019230

Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions

1. 

Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science and Technology, Changsha, 410114, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing, 100088, China

3. 

The Graduate School of China Academy of Engineering Physics, Beijing, 100088, China

* Corresponding author: Jing Li

Received  May 2018 Revised  June 2019 Published  April 2020 Early access  November 2019

Fund Project: The first author is supported by NSFC grant 11301040, Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ3519) and Scientific Research Project of Hunan Provincial Office of Education (Grant no. 17B003).

In this paper, by using the Gal$ {\rm\ddot{e}} $rkin method and energy estimates, the global weak solution and the smooth solution to the generalized Landau-Lifshitz-Bloch (GLLB) equation in high dimensions are obtained.

Citation: Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230
References:
[1]

A. Berti and C. Giorgi, Derivation of the Landau-Lifshitz-Bloch equation from continuum thermodynamics, Physica B: Condensed Matter, 500 (2016), 142-153.  doi: 10.1016/j.physb.2016.07.035.

[2]

V. BertiM. Fabrizio and C. Giorgi, A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness, Journal of Mathematical Analysis and Applications, 355 (2009), 661-674.  doi: 10.1016/j.jmaa.2009.01.065.

[3]

D. A. Garanin, Generalized equation of motion for a ferromagnet, Physica A: Statistical Mechanics and its Applications, 172 (1991), 470-491.  doi: 10.1016/0378-4371(91)90395-S.

[4]

D. A. GaraninV. V. lshtchenko and L. V. Panina, Dynamics of an ensemble of single-domain magnetic particles, Theoretical and Mathematical Physics, 82 (1990), 169-179.  doi: 10.1007/BF01079045.

[5]

B. L. Guo and S. J. Ding, Landau-Lifshitz Equations, 1$^{nd}$ edition, World Scientific Publishing Co. Pty. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812778765.

[6]

K. N. Le, Weak solutions of the Landau-Lifshitz-Bloch equation, Journal of Differential Equations, 261 (2016), 6699-6717.  doi: 10.1016/j.jde.2016.09.002.

show all references

References:
[1]

A. Berti and C. Giorgi, Derivation of the Landau-Lifshitz-Bloch equation from continuum thermodynamics, Physica B: Condensed Matter, 500 (2016), 142-153.  doi: 10.1016/j.physb.2016.07.035.

[2]

V. BertiM. Fabrizio and C. Giorgi, A three-dimensional phase transition model in ferromagnetism: Existence and uniqueness, Journal of Mathematical Analysis and Applications, 355 (2009), 661-674.  doi: 10.1016/j.jmaa.2009.01.065.

[3]

D. A. Garanin, Generalized equation of motion for a ferromagnet, Physica A: Statistical Mechanics and its Applications, 172 (1991), 470-491.  doi: 10.1016/0378-4371(91)90395-S.

[4]

D. A. GaraninV. V. lshtchenko and L. V. Panina, Dynamics of an ensemble of single-domain magnetic particles, Theoretical and Mathematical Physics, 82 (1990), 169-179.  doi: 10.1007/BF01079045.

[5]

B. L. Guo and S. J. Ding, Landau-Lifshitz Equations, 1$^{nd}$ edition, World Scientific Publishing Co. Pty. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812778765.

[6]

K. N. Le, Weak solutions of the Landau-Lifshitz-Bloch equation, Journal of Differential Equations, 261 (2016), 6699-6717.  doi: 10.1016/j.jde.2016.09.002.

[1]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

[2]

Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081

[3]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[4]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure and Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

[5]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[6]

Boling Guo, Fangfang Li. Global smooth solution for the Sipn-Polarized transport equation with Landau-Lifshitz-Bloch equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2825-2840. doi: 10.3934/dcdsb.2020034

[7]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[8]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[9]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[10]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[11]

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1809-1818. doi: 10.3934/dcds.2013.33.1809

[12]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[13]

Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128

[14]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[15]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[16]

M. Ramasubramaniam, M. Mathirajan. A solution framework for scheduling a BPM with non-identical job dimensions. Journal of Industrial and Management Optimization, 2007, 3 (3) : 445-456. doi: 10.3934/jimo.2007.3.445

[17]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[18]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic and Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[19]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[20]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (262)
  • HTML views (150)
  • Cited by (0)

Other articles
by authors

[Back to Top]