
-
Previous Article
Periodic solutions of differential-algebraic equations
- DCDS-B Home
- This Issue
-
Next Article
Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions
Ergodicity of non-autonomous discrete systems with non-uniform expansion
1. | Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói Brasil |
2. | Department of Mathematics, Faculty of Mathematical sciences, Shahid Beheshti University G.C, Tehran, Iran |
We study the ergodicity of non-autonomous discrete dynamical systems with non-uniform expansion. As an application we get that any uniformly expanding finitely generated semigroup action of $ C^{1+\alpha} $ local diffeomorphisms of a compact manifold is ergodic with respect to the Lebesgue measure. Moreover, we will also prove that every exact non-uniform expandable finitely generated semigroup action of conformal $ C^{1+\alpha} $ local diffeomorphisms of a compact manifold is Lebesgue ergodic.
References:
[1] |
J. F. Alves,
SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Scient. Éc. Norm. Sup., 33 (2000), 1-32.
doi: 10.1016/S0012-9593(00)00101-4. |
[2] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[3] |
J. F. Alves, S. Luzzatto and V. Pinheiro,
Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 817-839.
doi: 10.1016/j.anihpc.2004.12.002. |
[4] |
J. F. Alves and H. Vilarinho,
Strong stochastic stability for non-uniformly expanding maps, Ergod. Th. Dynam. Sys., 33 (2013), 647-692.
doi: 10.1017/S0143385712000077. |
[5] |
P. G. Barrientos, A. Fakhari, D. Malicet and A. Sarizadeh, Expanding actions: Minimality and ergodicity, Stoch. Dyn., 17 (2017), 1750031, 20 pp.
doi: 10.1142/S0219493717500319. |
[6] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[7] |
Y. L. Cao, S. Luzzatto and I. Rios,
Uniform hyperbolicity for random maps with positive Lyapunov exponents, Proc. Amer. Math. Soc., 136 (2008), 3591-3600.
doi: 10.1090/S0002-9939-08-09347-7. |
[8] |
M. Denker and M. Urbański,
On the existence of conformal measure, Trans. Amer. Math. Soc., 328 (1991), 563-587.
doi: 10.1090/S0002-9947-1991-1014246-4. |
[9] |
E. Durand-Cartagena and J. A. Jaramillo,
Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl., 363 (2010), 525-548.
doi: 10.1016/j.jmaa.2009.09.039. |
[10] |
A. Ehsani, F.-H. Ghane and M. Zaj, On Ergodicity of Mostly Expanding Semi-Group Actions, 2015, arXiv: 1505.03367. Google Scholar |
[11] |
M. Gharaei and A. J. Homburg,
Random interval diffeomorphisms, Discrete & Continuous Dynamical Systems-S, 10 (2017), 241-272.
doi: 10.3934/dcdss.2017012. |
[12] |
J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781316135914.![]() ![]() |
[13] |
T. Ilyashenko,
Thick Attractors of step skew products, Regular and Chaotic Dynamics, 15 (2010), 328-334.
doi: 10.1134/S1560354710020188. |
[14] |
A. Käenmäki, T. Rajala and V. Suomala, Local homogeneity and dimensions of measures in doubling metric spaces, Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1315–1351, arXiv: 1003.2895v1. |
[15] |
Y. Kifer,
Thermodynamic formalism for random transformations revisited, Stoch. Dyn., 8 (2008), 77-102.
doi: 10.1142/S0219493708002238. |
[16] |
R. Mañe, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[17] |
J. N. Sarkooh, F. H. Ghane and A. Fakhari, Ergodic Properties and Thermodynamic Formalism of Markov Maps Induced by Locally Expanding Actions, arXiv: 1810.02299v2. Google Scholar |
[18] |
F. Oliveira and L. F. C. da Rocha,
Minimal non-ergodic $C^1$-diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1843-1854.
doi: 10.1017/S0143385701001882. |
[19] |
V. Pinheiro,
Expanding measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889-939.
doi: 10.1016/j.anihpc.2011.07.001. |
[20] |
A. N. Quas,
Non-ergodicity for $C^1$ expanding maps and $g$-measures, Ergodic Theory Dynam. Systems, 16 (1996), 531-543.
doi: 10.1017/S0143385700008956. |
[21] |
A. A. Rashid and A. Zamani Bahabadi, Ergodicity of non-uniformly expanding transitive group (or semigroup) actions, J. Math. Phys., 57 (2016), 052702, 9 pp.
doi: 10.1063/1.4947530. |
[22] |
F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp.
doi: 10.1063/1.4950928. |
[23] |
M. Shub and D. Sullivan,
Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
[24] |
P. Varandas and M. Viana,
Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 555-593.
doi: 10.1016/j.anihpc.2009.10.002. |
show all references
References:
[1] |
J. F. Alves,
SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Scient. Éc. Norm. Sup., 33 (2000), 1-32.
doi: 10.1016/S0012-9593(00)00101-4. |
[2] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[3] |
J. F. Alves, S. Luzzatto and V. Pinheiro,
Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 817-839.
doi: 10.1016/j.anihpc.2004.12.002. |
[4] |
J. F. Alves and H. Vilarinho,
Strong stochastic stability for non-uniformly expanding maps, Ergod. Th. Dynam. Sys., 33 (2013), 647-692.
doi: 10.1017/S0143385712000077. |
[5] |
P. G. Barrientos, A. Fakhari, D. Malicet and A. Sarizadeh, Expanding actions: Minimality and ergodicity, Stoch. Dyn., 17 (2017), 1750031, 20 pp.
doi: 10.1142/S0219493717500319. |
[6] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[7] |
Y. L. Cao, S. Luzzatto and I. Rios,
Uniform hyperbolicity for random maps with positive Lyapunov exponents, Proc. Amer. Math. Soc., 136 (2008), 3591-3600.
doi: 10.1090/S0002-9939-08-09347-7. |
[8] |
M. Denker and M. Urbański,
On the existence of conformal measure, Trans. Amer. Math. Soc., 328 (1991), 563-587.
doi: 10.1090/S0002-9947-1991-1014246-4. |
[9] |
E. Durand-Cartagena and J. A. Jaramillo,
Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl., 363 (2010), 525-548.
doi: 10.1016/j.jmaa.2009.09.039. |
[10] |
A. Ehsani, F.-H. Ghane and M. Zaj, On Ergodicity of Mostly Expanding Semi-Group Actions, 2015, arXiv: 1505.03367. Google Scholar |
[11] |
M. Gharaei and A. J. Homburg,
Random interval diffeomorphisms, Discrete & Continuous Dynamical Systems-S, 10 (2017), 241-272.
doi: 10.3934/dcdss.2017012. |
[12] |
J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781316135914.![]() ![]() |
[13] |
T. Ilyashenko,
Thick Attractors of step skew products, Regular and Chaotic Dynamics, 15 (2010), 328-334.
doi: 10.1134/S1560354710020188. |
[14] |
A. Käenmäki, T. Rajala and V. Suomala, Local homogeneity and dimensions of measures in doubling metric spaces, Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1315–1351, arXiv: 1003.2895v1. |
[15] |
Y. Kifer,
Thermodynamic formalism for random transformations revisited, Stoch. Dyn., 8 (2008), 77-102.
doi: 10.1142/S0219493708002238. |
[16] |
R. Mañe, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[17] |
J. N. Sarkooh, F. H. Ghane and A. Fakhari, Ergodic Properties and Thermodynamic Formalism of Markov Maps Induced by Locally Expanding Actions, arXiv: 1810.02299v2. Google Scholar |
[18] |
F. Oliveira and L. F. C. da Rocha,
Minimal non-ergodic $C^1$-diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1843-1854.
doi: 10.1017/S0143385701001882. |
[19] |
V. Pinheiro,
Expanding measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889-939.
doi: 10.1016/j.anihpc.2011.07.001. |
[20] |
A. N. Quas,
Non-ergodicity for $C^1$ expanding maps and $g$-measures, Ergodic Theory Dynam. Systems, 16 (1996), 531-543.
doi: 10.1017/S0143385700008956. |
[21] |
A. A. Rashid and A. Zamani Bahabadi, Ergodicity of non-uniformly expanding transitive group (or semigroup) actions, J. Math. Phys., 57 (2016), 052702, 9 pp.
doi: 10.1063/1.4947530. |
[22] |
F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp.
doi: 10.1063/1.4950928. |
[23] |
M. Shub and D. Sullivan,
Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
[24] |
P. Varandas and M. Viana,
Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 555-593.
doi: 10.1016/j.anihpc.2009.10.002. |
[1] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[2] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[3] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[4] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[5] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[6] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[7] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[8] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020381 |
[9] |
Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018 |
[10] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[11] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
[12] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[13] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[14] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[15] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[16] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[17] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[18] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[19] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[20] |
Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]