
-
Previous Article
Periodic solutions of differential-algebraic equations
- DCDS-B Home
- This Issue
-
Next Article
Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions
Ergodicity of non-autonomous discrete systems with non-uniform expansion
1. | Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói Brasil |
2. | Department of Mathematics, Faculty of Mathematical sciences, Shahid Beheshti University G.C, Tehran, Iran |
We study the ergodicity of non-autonomous discrete dynamical systems with non-uniform expansion. As an application we get that any uniformly expanding finitely generated semigroup action of $ C^{1+\alpha} $ local diffeomorphisms of a compact manifold is ergodic with respect to the Lebesgue measure. Moreover, we will also prove that every exact non-uniform expandable finitely generated semigroup action of conformal $ C^{1+\alpha} $ local diffeomorphisms of a compact manifold is Lebesgue ergodic.
References:
[1] |
J. F. Alves,
SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Scient. Éc. Norm. Sup., 33 (2000), 1-32.
doi: 10.1016/S0012-9593(00)00101-4. |
[2] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[3] |
J. F. Alves, S. Luzzatto and V. Pinheiro,
Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 817-839.
doi: 10.1016/j.anihpc.2004.12.002. |
[4] |
J. F. Alves and H. Vilarinho,
Strong stochastic stability for non-uniformly expanding maps, Ergod. Th. Dynam. Sys., 33 (2013), 647-692.
doi: 10.1017/S0143385712000077. |
[5] |
P. G. Barrientos, A. Fakhari, D. Malicet and A. Sarizadeh, Expanding actions: Minimality and ergodicity, Stoch. Dyn., 17 (2017), 1750031, 20 pp.
doi: 10.1142/S0219493717500319. |
[6] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[7] |
Y. L. Cao, S. Luzzatto and I. Rios,
Uniform hyperbolicity for random maps with positive Lyapunov exponents, Proc. Amer. Math. Soc., 136 (2008), 3591-3600.
doi: 10.1090/S0002-9939-08-09347-7. |
[8] |
M. Denker and M. Urbański,
On the existence of conformal measure, Trans. Amer. Math. Soc., 328 (1991), 563-587.
doi: 10.1090/S0002-9947-1991-1014246-4. |
[9] |
E. Durand-Cartagena and J. A. Jaramillo,
Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl., 363 (2010), 525-548.
doi: 10.1016/j.jmaa.2009.09.039. |
[10] |
A. Ehsani, F.-H. Ghane and M. Zaj, On Ergodicity of Mostly Expanding Semi-Group Actions, 2015, arXiv: 1505.03367. |
[11] |
M. Gharaei and A. J. Homburg,
Random interval diffeomorphisms, Discrete & Continuous Dynamical Systems-S, 10 (2017), 241-272.
doi: 10.3934/dcdss.2017012. |
[12] |
J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781316135914.![]() ![]() ![]() |
[13] |
T. Ilyashenko,
Thick Attractors of step skew products, Regular and Chaotic Dynamics, 15 (2010), 328-334.
doi: 10.1134/S1560354710020188. |
[14] |
A. Käenmäki, T. Rajala and V. Suomala, Local homogeneity and dimensions of measures in doubling metric spaces, Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1315–1351, arXiv: 1003.2895v1. |
[15] |
Y. Kifer,
Thermodynamic formalism for random transformations revisited, Stoch. Dyn., 8 (2008), 77-102.
doi: 10.1142/S0219493708002238. |
[16] |
R. Mañe, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[17] |
J. N. Sarkooh, F. H. Ghane and A. Fakhari, Ergodic Properties and Thermodynamic Formalism of Markov Maps Induced by Locally Expanding Actions, arXiv: 1810.02299v2. |
[18] |
F. Oliveira and L. F. C. da Rocha,
Minimal non-ergodic $C^1$-diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1843-1854.
doi: 10.1017/S0143385701001882. |
[19] |
V. Pinheiro,
Expanding measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889-939.
doi: 10.1016/j.anihpc.2011.07.001. |
[20] |
A. N. Quas,
Non-ergodicity for $C^1$ expanding maps and $g$-measures, Ergodic Theory Dynam. Systems, 16 (1996), 531-543.
doi: 10.1017/S0143385700008956. |
[21] |
A. A. Rashid and A. Zamani Bahabadi, Ergodicity of non-uniformly expanding transitive group (or semigroup) actions, J. Math. Phys., 57 (2016), 052702, 9 pp.
doi: 10.1063/1.4947530. |
[22] |
F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp.
doi: 10.1063/1.4950928. |
[23] |
M. Shub and D. Sullivan,
Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
[24] |
P. Varandas and M. Viana,
Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 555-593.
doi: 10.1016/j.anihpc.2009.10.002. |
show all references
References:
[1] |
J. F. Alves,
SRB measures for non-hyperbolic systems with multidimensional expansion, Ann. Scient. Éc. Norm. Sup., 33 (2000), 1-32.
doi: 10.1016/S0012-9593(00)00101-4. |
[2] |
J. F. Alves, C. Bonatti and M. Viana,
SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math., 140 (2000), 351-398.
doi: 10.1007/s002220000057. |
[3] |
J. F. Alves, S. Luzzatto and V. Pinheiro,
Markov structures and decay of correlations for non-uniformly expanding dynamical systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 817-839.
doi: 10.1016/j.anihpc.2004.12.002. |
[4] |
J. F. Alves and H. Vilarinho,
Strong stochastic stability for non-uniformly expanding maps, Ergod. Th. Dynam. Sys., 33 (2013), 647-692.
doi: 10.1017/S0143385712000077. |
[5] |
P. G. Barrientos, A. Fakhari, D. Malicet and A. Sarizadeh, Expanding actions: Minimality and ergodicity, Stoch. Dyn., 17 (2017), 1750031, 20 pp.
doi: 10.1142/S0219493717500319. |
[6] |
R. Bowen,
A horseshoe with positive measure, Invent. Math., 29 (1975), 203-204.
doi: 10.1007/BF01389849. |
[7] |
Y. L. Cao, S. Luzzatto and I. Rios,
Uniform hyperbolicity for random maps with positive Lyapunov exponents, Proc. Amer. Math. Soc., 136 (2008), 3591-3600.
doi: 10.1090/S0002-9939-08-09347-7. |
[8] |
M. Denker and M. Urbański,
On the existence of conformal measure, Trans. Amer. Math. Soc., 328 (1991), 563-587.
doi: 10.1090/S0002-9947-1991-1014246-4. |
[9] |
E. Durand-Cartagena and J. A. Jaramillo,
Pointwise Lipschitz functions on metric spaces, J. Math. Anal. Appl., 363 (2010), 525-548.
doi: 10.1016/j.jmaa.2009.09.039. |
[10] |
A. Ehsani, F.-H. Ghane and M. Zaj, On Ergodicity of Mostly Expanding Semi-Group Actions, 2015, arXiv: 1505.03367. |
[11] |
M. Gharaei and A. J. Homburg,
Random interval diffeomorphisms, Discrete & Continuous Dynamical Systems-S, 10 (2017), 241-272.
doi: 10.3934/dcdss.2017012. |
[12] |
J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients, New Mathematical Monographs, 27. Cambridge University Press, Cambridge, 2015.
doi: 10.1017/CBO9781316135914.![]() ![]() ![]() |
[13] |
T. Ilyashenko,
Thick Attractors of step skew products, Regular and Chaotic Dynamics, 15 (2010), 328-334.
doi: 10.1134/S1560354710020188. |
[14] |
A. Käenmäki, T. Rajala and V. Suomala, Local homogeneity and dimensions of measures in doubling metric spaces, Sc. Norm. Super. Pisa Cl. Sci., 16 (2016), 1315–1351, arXiv: 1003.2895v1. |
[15] |
Y. Kifer,
Thermodynamic formalism for random transformations revisited, Stoch. Dyn., 8 (2008), 77-102.
doi: 10.1142/S0219493708002238. |
[16] |
R. Mañe, Ergodic Theory and Differentiable Dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 8. Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-70335-5. |
[17] |
J. N. Sarkooh, F. H. Ghane and A. Fakhari, Ergodic Properties and Thermodynamic Formalism of Markov Maps Induced by Locally Expanding Actions, arXiv: 1810.02299v2. |
[18] |
F. Oliveira and L. F. C. da Rocha,
Minimal non-ergodic $C^1$-diffeomorphisms of the circle, Ergodic Theory Dynam. Systems, 21 (2001), 1843-1854.
doi: 10.1017/S0143385701001882. |
[19] |
V. Pinheiro,
Expanding measures, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 889-939.
doi: 10.1016/j.anihpc.2011.07.001. |
[20] |
A. N. Quas,
Non-ergodicity for $C^1$ expanding maps and $g$-measures, Ergodic Theory Dynam. Systems, 16 (1996), 531-543.
doi: 10.1017/S0143385700008956. |
[21] |
A. A. Rashid and A. Zamani Bahabadi, Ergodicity of non-uniformly expanding transitive group (or semigroup) actions, J. Math. Phys., 57 (2016), 052702, 9 pp.
doi: 10.1063/1.4947530. |
[22] |
F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys., 57 (2016), 052704, 27 pp.
doi: 10.1063/1.4950928. |
[23] |
M. Shub and D. Sullivan,
Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems, 5 (1985), 285-289.
doi: 10.1017/S014338570000290X. |
[24] |
P. Varandas and M. Viana,
Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 555-593.
doi: 10.1016/j.anihpc.2009.10.002. |
[1] |
Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014 |
[2] |
Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589 |
[3] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400 |
[4] |
Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297 |
[5] |
Markus Bachmayr, Van Kien Nguyen. Identifiability of diffusion coefficients for source terms of non-uniform sign. Inverse Problems and Imaging, 2019, 13 (5) : 1007-1021. doi: 10.3934/ipi.2019045 |
[6] |
Zhong-Jie Han, Gen-Qi Xu. Spectrum and dynamical behavior of a kind of planar network of non-uniform strings with non-collocated feedbacks. Networks and Heterogeneous Media, 2010, 5 (2) : 315-334. doi: 10.3934/nhm.2010.5.315 |
[7] |
Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 |
[8] |
Zhong-Jie Han, Gen-Qi Xu. Exponential decay in non-uniform porous-thermo-elasticity model of Lord-Shulman type. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 57-77. doi: 10.3934/dcdsb.2012.17.57 |
[9] |
Hai Huyen Dam, Wing-Kuen Ling. Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank. Journal of Industrial and Management Optimization, 2019, 15 (1) : 97-112. doi: 10.3934/jimo.2018034 |
[10] |
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 |
[11] |
Ruilin Li, Xin Wang, Hongyuan Zha, Molei Tao. Improving sampling accuracy of stochastic gradient MCMC methods via non-uniform subsampling of gradients. Discrete and Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021157 |
[12] |
Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 |
[13] |
Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems and Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042 |
[14] |
Xiaolin Jia, Caidi Zhao, Juan Cao. Uniform attractor of the non-autonomous discrete Selkov model. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 229-248. doi: 10.3934/dcds.2014.34.229 |
[15] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74 |
[16] |
François Ledrappier, Omri Sarig. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 411-433. doi: 10.3934/dcds.2006.16.411 |
[17] |
Vladimir Anashin, Andrei Khrennikov, Ekaterina Yurova. Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 367-377. doi: 10.3934/dcds.2014.34.367 |
[18] |
Cheng-Jie Liu, Feng Xie, Tong Yang. Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with TMF. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2725-2750. doi: 10.3934/cpaa.2021073 |
[19] |
Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1135-1148. doi: 10.3934/jimo.2018196 |
[20] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]