
-
Previous Article
Takens–Bogdanov singularity for age structured models
- DCDS-B Home
- This Issue
-
Next Article
Spatial spread of epidemic diseases in geographical settings: Seasonal influenza epidemics in Puerto Rico
An SICR rumor spreading model in heterogeneous networks
1. | School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China |
2. | Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Taiyuan 030006, China |
3. | Complex System Research Center, Shanxi University, Taiyuan 030006, China |
This article discusses the spread of rumors in heterogeneous networks. Using the probability generating function method and the approximation theory, we establish an SICR rumor model and calculate the threshold conditions for the outbreak of the rumor. We also compare the speed of the rumors spreading with different initial conditions. The numerical simulations of the SICR model in this paper fit well with the stochastic simulations, which means that the model is reliable. Moreover the effects of the parameters in the model on the transmission of rumors are studied numerically.
References:
[1] |
L. Buzna, K. Peters and D. Helbing, Modelling the dynamics of disaster spreading in networks, Physica A, 363 (2006), 132-140. Google Scholar |
[2] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, Ima Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[3] |
L.-A. Huo, P. Q. Huang and X. Fang,
An interplay model for authorities' actions and rumor spreading in emergency event, Physica A, 390 (2011), 3267-3274.
doi: 10.1016/j.physa.2011.05.008. |
[4] |
L. A. Huo, L. Wang, N. X. Song, C. Y. Ma and B. He,
Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A, 468 (2017), 855-865.
doi: 10.1016/j.physa.2016.11.039. |
[5] |
R. L. Jie, J. Qiao, G. J. Xu and Y. Y. Meng,
A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Physica A, 454 (2016), 129-142.
doi: 10.1016/j.physa.2016.02.048. |
[6] |
C. Lefévre and P. Picard,
Distribution of the final extent of a rumour process, Journal of Applied Probability, 31 (1994), 244-249.
doi: 10.2307/3215250. |
[7] |
J. X. Li, J. Wang and Z. Jin,
SIR dynamics in random networks with communities, Journal of Mathematical Biology, 77 (2018), 1117-1151.
doi: 10.1007/s00285-018-1247-5. |
[8] |
Q. M. Liu, T. Li and M. C. Su,
The analysis of an SEIR rumor propagation model on heterogeneous network, Physica A, 469 (2017), 372-380.
doi: 10.1016/j.physa.2016.11.067. |
[9] |
K. Ma, W. H. Li, Q. T. Guo, X. Q. Zheng, Z. M. Zheng, C. Gao and S. T. Tang,
Information spreading in complex networks with participation of independent spreaders, Physica A, 492 (2018), 21-27.
doi: 10.1016/j.physa.2017.09.052. |
[10] |
H. Matsuda, N. Ogita, A. Sasaki and K. Sato,
Statistical mechanics of population: The lattice Lotka-Volterra model, Progress of Theoretical Physics, 88 (1992), 1035-1049.
doi: 10.1143/ptp/88.6.1035. |
[11] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[12] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[13] |
M. E. J. Newman, S. Forrest and J. Balthrop, Email networks and the spread of computer viruses, Physical Review E, 66 (2002), 035101.
doi: 10.1103/PhysRevE.66.035101. |
[14] |
Z. Qian, S. T. Tang, X. Zhang and Z. M. Zheng,
The independent spreaders involved SIR Rumor model in complex networks, Physica A, 429 (2015), 95-102.
doi: 10.1016/j.physa.2015.02.022. |
[15] |
F. Roshani and Y. Naimi, Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks, Physical Review E, 85 (2012), 036109. Google Scholar |
[16] |
Z. Y. Ruan, M. Tang and Z. H. Liu, Epidemic spreading with information-driven vaccination, Physical Review E, 86 (2012), 036117.
doi: 10.1103/PhysRevE.86.036117. |
[17] |
E. Volz,
SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293-310.
doi: 10.1007/s00285-007-0116-4. |
[18] |
C. Wan, T. Li and Y. Wang, Rumor Spreading of a SICS Model on complex social networks with counter mechanism, Open Access Library Journal, 03 (2016), 1-11. Google Scholar |
[19] |
J. J. Wang, L. J. Zhao and R. B. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[20] |
J. J. Wang, L. J. Zhao and R. B. Huang,
SIRaRu rumor spreading model in complex networks, Physica A, 398 (2014), 43-55.
doi: 10.1016/j.physa.2013.12.004. |
[21] |
Y. Wang, X. Yang and Y. Han, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[22] |
L.-L. Xia, G.-P. Jiang, B. Song and Y.-R. Song,
Rumor spreading model considering hesitating mechanism in complex social networks, Physica A, 437 (2015), 295-303.
doi: 10.1016/j.physa.2015.05.113. |
[23] |
Y. L. Zan, J. L. Wu, P. Li and Q. L. Yu,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[24] |
D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[25] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[26] |
L. J. Zhao, X. Y. Qiu, X. L. Wang and J. J. Wang,
Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks, Physica A, 392 (2013), 987-994.
doi: 10.1016/j.physa.2012.10.031. |
[27] |
L. J. Zhao, J. J. Wang, Y. C. Chen, Q. Wang, J. J. Cheng and H. X. Cui,
SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.
doi: 10.1016/j.physa.2011.12.008. |
[28] |
L. Zhu and Y. G. Wang,
Rumor spreading model with noise interference in complex social networks, Physica A, 469 (2017), 750-760.
doi: 10.1016/j.physa.2016.11.119. |
show all references
References:
[1] |
L. Buzna, K. Peters and D. Helbing, Modelling the dynamics of disaster spreading in networks, Physica A, 363 (2006), 132-140. Google Scholar |
[2] |
D. J. Daley and D. G. Kendall,
Stochastic rumours, Ima Journal of Applied Mathematics, 1 (1965), 42-55.
doi: 10.1093/imamat/1.1.42. |
[3] |
L.-A. Huo, P. Q. Huang and X. Fang,
An interplay model for authorities' actions and rumor spreading in emergency event, Physica A, 390 (2011), 3267-3274.
doi: 10.1016/j.physa.2011.05.008. |
[4] |
L. A. Huo, L. Wang, N. X. Song, C. Y. Ma and B. He,
Rumor spreading model considering the activity of spreaders in the homogeneous network, Physica A, 468 (2017), 855-865.
doi: 10.1016/j.physa.2016.11.039. |
[5] |
R. L. Jie, J. Qiao, G. J. Xu and Y. Y. Meng,
A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Physica A, 454 (2016), 129-142.
doi: 10.1016/j.physa.2016.02.048. |
[6] |
C. Lefévre and P. Picard,
Distribution of the final extent of a rumour process, Journal of Applied Probability, 31 (1994), 244-249.
doi: 10.2307/3215250. |
[7] |
J. X. Li, J. Wang and Z. Jin,
SIR dynamics in random networks with communities, Journal of Mathematical Biology, 77 (2018), 1117-1151.
doi: 10.1007/s00285-018-1247-5. |
[8] |
Q. M. Liu, T. Li and M. C. Su,
The analysis of an SEIR rumor propagation model on heterogeneous network, Physica A, 469 (2017), 372-380.
doi: 10.1016/j.physa.2016.11.067. |
[9] |
K. Ma, W. H. Li, Q. T. Guo, X. Q. Zheng, Z. M. Zheng, C. Gao and S. T. Tang,
Information spreading in complex networks with participation of independent spreaders, Physica A, 492 (2018), 21-27.
doi: 10.1016/j.physa.2017.09.052. |
[10] |
H. Matsuda, N. Ogita, A. Sasaki and K. Sato,
Statistical mechanics of population: The lattice Lotka-Volterra model, Progress of Theoretical Physics, 88 (1992), 1035-1049.
doi: 10.1143/ptp/88.6.1035. |
[11] |
Y. Moreno, M. Nekovee and A. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 066130.
doi: 10.1103/PhysRevE.69.066130. |
[12] |
M. Nekovee, Y. Moreno, G. Bianconi and M. Marsili,
Theory of rumour spreading in complex social networks, Physica A, 374 (2007), 457-470.
doi: 10.1016/j.physa.2006.07.017. |
[13] |
M. E. J. Newman, S. Forrest and J. Balthrop, Email networks and the spread of computer viruses, Physical Review E, 66 (2002), 035101.
doi: 10.1103/PhysRevE.66.035101. |
[14] |
Z. Qian, S. T. Tang, X. Zhang and Z. M. Zheng,
The independent spreaders involved SIR Rumor model in complex networks, Physica A, 429 (2015), 95-102.
doi: 10.1016/j.physa.2015.02.022. |
[15] |
F. Roshani and Y. Naimi, Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks, Physical Review E, 85 (2012), 036109. Google Scholar |
[16] |
Z. Y. Ruan, M. Tang and Z. H. Liu, Epidemic spreading with information-driven vaccination, Physical Review E, 86 (2012), 036117.
doi: 10.1103/PhysRevE.86.036117. |
[17] |
E. Volz,
SIR dynamics in random networks with heterogeneous connectivity, Journal of Mathematical Biology, 56 (2008), 293-310.
doi: 10.1007/s00285-007-0116-4. |
[18] |
C. Wan, T. Li and Y. Wang, Rumor Spreading of a SICS Model on complex social networks with counter mechanism, Open Access Library Journal, 03 (2016), 1-11. Google Scholar |
[19] |
J. J. Wang, L. J. Zhao and R. B. Huang,
2SI2R rumor spreading model in homogeneous networks, Physica A, 413 (2014), 153-161.
doi: 10.1016/j.physa.2014.06.053. |
[20] |
J. J. Wang, L. J. Zhao and R. B. Huang,
SIRaRu rumor spreading model in complex networks, Physica A, 398 (2014), 43-55.
doi: 10.1016/j.physa.2013.12.004. |
[21] |
Y. Wang, X. Yang and Y. Han, Rumor spreading model with trust mechanism in complex social networks, Communications in Theoretical Physics, 59 (2013), 510-516. Google Scholar |
[22] |
L.-L. Xia, G.-P. Jiang, B. Song and Y.-R. Song,
Rumor spreading model considering hesitating mechanism in complex social networks, Physica A, 437 (2015), 295-303.
doi: 10.1016/j.physa.2015.05.113. |
[23] |
Y. L. Zan, J. L. Wu, P. Li and Q. L. Yu,
SICR rumor spreading model in complex networks: Counterattack and self-resistance, Physica A, 405 (2014), 159-170.
doi: 10.1016/j.physa.2014.03.021. |
[24] |
D. H. Zanette, Critical behavior of propagation on small-world networks, Physical Review E, 64 (2001), 050901.
doi: 10.1103/PhysRevE.64.050901. |
[25] |
D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 041908.
doi: 10.1103/PhysRevE.65.041908. |
[26] |
L. J. Zhao, X. Y. Qiu, X. L. Wang and J. J. Wang,
Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks, Physica A, 392 (2013), 987-994.
doi: 10.1016/j.physa.2012.10.031. |
[27] |
L. J. Zhao, J. J. Wang, Y. C. Chen, Q. Wang, J. J. Cheng and H. X. Cui,
SIHR rumor spreading model in social networks, Physica A, 391 (2012), 2444-2453.
doi: 10.1016/j.physa.2011.12.008. |
[28] |
L. Zhu and Y. G. Wang,
Rumor spreading model with noise interference in complex social networks, Physica A, 469 (2017), 750-760.
doi: 10.1016/j.physa.2016.11.119. |











Series Symbol | Series Description |
Spreading rate. The constant rate at which a susceptible node | |
becomes an infective node when it contacts an infective node | |
Ignoring rate. The constant rate at which a susceptible node becomes | |
a refractory node when it contacts an infective node | |
Refuting rate. The constant rate at which a susceptible node becomes | |
a counterattack node when it contacts an infective node | |
Stifling rate. The constant rate at which an infective node becomes | |
a refractory node when it contacts another infective or | |
refractory node | |
Persuading rate. The constant rate at which an infective node | |
becomes a refractory node when it contacts a counterattack node | |
The probability that a node will have degree |
|
The probability generating function for the degree distribution |
|
The probability that an arc with an ego in set X has an alter in Y | |
Set of arcs (ego, alter) such that node ego is in set |
|
Fraction of arcs in set |
|
Set of arcs (ego, alter) s.t ego |
|
Fraction of arcs in set |
Series Symbol | Series Description |
Spreading rate. The constant rate at which a susceptible node | |
becomes an infective node when it contacts an infective node | |
Ignoring rate. The constant rate at which a susceptible node becomes | |
a refractory node when it contacts an infective node | |
Refuting rate. The constant rate at which a susceptible node becomes | |
a counterattack node when it contacts an infective node | |
Stifling rate. The constant rate at which an infective node becomes | |
a refractory node when it contacts another infective or | |
refractory node | |
Persuading rate. The constant rate at which an infective node | |
becomes a refractory node when it contacts a counterattack node | |
The probability that a node will have degree |
|
The probability generating function for the degree distribution |
|
The probability that an arc with an ego in set X has an alter in Y | |
Set of arcs (ego, alter) such that node ego is in set |
|
Fraction of arcs in set |
|
Set of arcs (ego, alter) s.t ego |
|
Fraction of arcs in set |
[1] |
Bum Il Hong, Nahmwoo Hahm, Sun-Ho Choi. SIR Rumor spreading model with trust rate distribution. Networks & Heterogeneous Media, 2018, 13 (3) : 515-530. doi: 10.3934/nhm.2018023 |
[2] |
Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393 |
[3] |
F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49 |
[4] |
Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202 |
[5] |
Mei Li, Zhigui Lin. The spreading fronts in a mutualistic model with advection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2089-2105. doi: 10.3934/dcdsb.2015.20.2089 |
[6] |
Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1843-1865. doi: 10.3934/dcdsb.2018240 |
[7] |
Hideo Ikeda, Masayasu Mimura, Tommaso Scotti. Shadow system approach to a plankton model generating harmful algal bloom. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 829-858. doi: 10.3934/dcds.2017034 |
[8] |
Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217 |
[9] |
Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 |
[10] |
Benedetto Piccoli. Special issue from the launching meeting of networks and heterogeneous media. Networks & Heterogeneous Media, 2006, 1 (4) : i-ii. doi: 10.3934/nhm.2006.1.4i |
[11] |
Linet Ozdamar, Dilek Tuzun Aksu, Elifcan Yasa, Biket Ergunes. Disaster relief routing in limited capacity road networks with heterogeneous flows. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1367-1380. doi: 10.3934/jimo.2018011 |
[12] |
Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016 |
[13] |
Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545 |
[14] |
Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure & Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005 |
[15] |
Yuan Zhao, Wuyi Yue. Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018195 |
[16] |
Alessia Marigo, Benedetto Piccoli. A model for biological dynamic networks. Networks & Heterogeneous Media, 2011, 6 (4) : 647-663. doi: 10.3934/nhm.2011.6.647 |
[17] |
Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229 |
[18] |
Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012 |
[19] |
Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591 |
[20] |
Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]