Our purpose is to formulate an abstract result, motivated by the recent paper [
Citation: |
[1] | R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975. |
[2] | H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6. |
[3] | J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310. doi: 10.2307/118154. |
[4] | J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404. |
[5] | J. W. Cholewa and T. Dlotko, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B, 23 (2018), 2967-2988. doi: 10.3934/dcdsb.2017149. |
[6] | A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1. |
[7] | A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316-15317. doi: 10.1073/pnas.2036515100. |
[8] | T. Dlotko, Navier-Stokes equation and its fractional approximations, Appl. Math. Optim., 77 (2018), 99-128. doi: 10.1007/s00245-016-9368-y. |
[9] | T. Dlotko, M. B. Kania and C. Y. Sun, Quasi-geostrophic equation in $ \mathbb{R}^2$, J. Differential Equations, 259 (2015), 531-561. doi: 10.1016/j.jde.2015.02.022. |
[10] | S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003. |
[11] | C. Foias, D. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152/153 (2001), 505-519. doi: 10.1016/S0167-2789(01)00191-9. |
[12] | Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329. doi: 10.1007/BF01214869. |
[13] | Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281. doi: 10.1007/BF00276875. |
[14] | L. Grafakos and S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations, 39 (2014), 1128-1157. doi: 10.1080/03605302.2013.822885. |
[15] | B. L. Guo, D. W. Huang, Q. X. Li and C. Y. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $ \mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272. doi: 10.1515/ans-2015-5018. |
[16] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089649. |
[17] | D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Lecture Notes in Math., Springer, Berlin-New York, 957 (1982), 97-109. doi: 10.1007/BFb0066235. |
[18] | N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642. doi: 10.1007/s00208-005-0715-6. |
[19] | T. Kato, Strong Lp-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480. doi: 10.1007/BF01174182. |
[20] | A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3. |
[21] | H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346. doi: 10.2140/pjm.1966.19.285. |
[22] | S. G. Kre$\check{{\rm i}}$n, Linear Differential Equations in Banach Spaces, Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971. |
[23] | I. Lasiecka, Unified theory for abstract parabolic boundary problems-A semigroup approach, Appl. Math. Optim., 6 (1980), 287-333. doi: 10.1007/BF01442900. |
[24] | J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248. doi: 10.1007/BF02547354. |
[25] | F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext. Springer, New York, 2009. |
[26] | J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[27] | C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187. North-Holland Publishing Co., Amsterdam, 2001. |
[28] | A. Rodriguez-Bernal, Existence, Uniqueness and Regularity of Solutions of Nonlinear Evolution Equations in Extended Scales of Hilbert Spaces, CDSNS91-61 Report, Georgia Institute of Technology, Atlanta, 1991. |
[29] | H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2. |
[30] | E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970. |
[31] | W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551. doi: 10.2140/pjm.1966.19.543. |
[32] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338. |
[33] | R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43. doi: 10.1016/0022-1236(75)90052-X. |
[34] | H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. doi: 10.1097/00005768-199805001-01817. |
[35] | W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9. |
[36] | W. von Wahl, Global solutions to evolution equations of parabolic type, Differential Equations in Banach Spaces, Lecture Notes in Math., Springer, Berlin, 1223 (1986), 254-266. doi: 10.1007/BFb0099198. |
[37] | Y. Wang and T. Liang, Mild solutions to the time fractional Navier-Stokes delay differential inclusions, Discrete Contin. Dyn. Syst. Series B, 24 (2019), 3713-3740. |
[38] | J. H. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations, (2001), 13 pp. doi: 10.1111/1468-0262.00185. |
[39] | A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5. |