doi: 10.3934/dcdsb.2019238

Critical and super-critical abstract parabolic equations

1. 

Institute of Mathematics, University of Silesia, Katowice, Poland

2. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

Received  December 2018 Published  November 2019

Fund Project: This work was supported by NSF of China (Grants No. 41875084, 11571153), the Fundamental Research Funds for the Central Universities under Grant Nos. lzujbky-2018-ot03 and lzujbky-2018-it58

Our purpose is to formulate an abstract result, motivated by the recent paper [8], allowing to treat the solutions of critical and super-critical equations as limits of solutions to their regularizations. In both cases we are improving the viscosity, making it stronger, solving the obtained regularizations with the use of Dan Henry's technique, then passing to the limit in the improved viscosity term to get a solution of the limit problem. While in case of the critical problems we will just consider a 'bit higher' fractional power of the viscosity term, for super-critical problems we need to use a version of the 'vanishing viscosity technique' that comes back to the considerations of E. Hopf, O.A. Oleinik, P.D. Lax and J.-L. Lions from 1950th. In both cases, the key to that method are the uniform with respect to the parameter estimates of the approximating solutions. The abstract result is illustrated with the Navier-Stokes equation in space dimensions 2 to 4, and with the 2-D quasi-geostrophic equation. Various technical estimates related to that problems and their fractional generalizations are also presented in the paper.

Citation: Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019238
References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.   Google Scholar
[2]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.  doi: 10.2307/118154.  Google Scholar

[4] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[5]

J. W. Cholewa and T. Dlotko, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B, 23 (2018), 2967-2988.  doi: 10.3934/dcdsb.2017149.  Google Scholar

[6]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[7]

A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316-15317.  doi: 10.1073/pnas.2036515100.  Google Scholar

[8]

T. Dlotko, Navier-Stokes equation and its fractional approximations, Appl. Math. Optim., 77 (2018), 99-128.  doi: 10.1007/s00245-016-9368-y.  Google Scholar

[9]

T. DlotkoM. B. Kania and C. Y. Sun, Quasi-geostrophic equation in $ \mathbb{R}^2$, J. Differential Equations, 259 (2015), 531-561.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[10]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003.  Google Scholar

[11]

C. FoiasD. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152/153 (2001), 505-519.  doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

[12]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329.  doi: 10.1007/BF01214869.  Google Scholar

[13]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[14]

L. Grafakos and S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations, 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[15]

B. L. GuoD. W. HuangQ. X. Li and C. Y. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $ \mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272.  doi: 10.1515/ans-2015-5018.  Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089649.  Google Scholar

[17]

D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Lecture Notes in Math., Springer, Berlin-New York, 957 (1982), 97-109.  doi: 10.1007/BFb0066235.  Google Scholar

[18]

N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642.  doi: 10.1007/s00208-005-0715-6.  Google Scholar

[19]

T. Kato, Strong Lp-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[20]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[21]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[22]

S. G. Kre$\check{{\rm i}}$n, Linear Differential Equations in Banach Spaces, Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971.  Google Scholar

[23]

I. Lasiecka, Unified theory for abstract parabolic boundary problems-A semigroup approach, Appl. Math. Optim., 6 (1980), 287-333.  doi: 10.1007/BF01442900.  Google Scholar

[24]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[25]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext. Springer, New York, 2009.  Google Scholar

[26]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[27]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187. North-Holland Publishing Co., Amsterdam, 2001.  Google Scholar

[28]

A. Rodriguez-Bernal, Existence, Uniqueness and Regularity of Solutions of Nonlinear Evolution Equations in Extended Scales of Hilbert Spaces, CDSNS91-61 Report, Georgia Institute of Technology, Atlanta, 1991. Google Scholar

[29]

H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[31]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551.  doi: 10.2140/pjm.1966.19.543.  Google Scholar

[32]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.  Google Scholar

[33]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[34]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. doi: 10.1097/00005768-199805001-01817.  Google Scholar

[35]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[36]

W. von Wahl, Global solutions to evolution equations of parabolic type, Differential Equations in Banach Spaces, Lecture Notes in Math., Springer, Berlin, 1223 (1986), 254-266.  doi: 10.1007/BFb0099198.  Google Scholar

[37]

Y. Wang and T. Liang, Mild solutions to the time fractional Navier-Stokes delay differential inclusions, Discrete Contin. Dyn. Syst. Series B, 24 (2019), 3713-3740.   Google Scholar

[38]

J. H. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations, (2001), 13 pp. doi: 10.1111/1468-0262.00185.  Google Scholar

[39]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.   Google Scholar
[2]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[3]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.  doi: 10.2307/118154.  Google Scholar

[4] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.  Google Scholar
[5]

J. W. Cholewa and T. Dlotko, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B, 23 (2018), 2967-2988.  doi: 10.3934/dcdsb.2017149.  Google Scholar

[6]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[7]

A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316-15317.  doi: 10.1073/pnas.2036515100.  Google Scholar

[8]

T. Dlotko, Navier-Stokes equation and its fractional approximations, Appl. Math. Optim., 77 (2018), 99-128.  doi: 10.1007/s00245-016-9368-y.  Google Scholar

[9]

T. DlotkoM. B. Kania and C. Y. Sun, Quasi-geostrophic equation in $ \mathbb{R}^2$, J. Differential Equations, 259 (2015), 531-561.  doi: 10.1016/j.jde.2015.02.022.  Google Scholar

[10]

S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003.  Google Scholar

[11]

C. FoiasD. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152/153 (2001), 505-519.  doi: 10.1016/S0167-2789(01)00191-9.  Google Scholar

[12]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329.  doi: 10.1007/BF01214869.  Google Scholar

[13]

Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.  Google Scholar

[14]

L. Grafakos and S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations, 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.  Google Scholar

[15]

B. L. GuoD. W. HuangQ. X. Li and C. Y. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $ \mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272.  doi: 10.1515/ans-2015-5018.  Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089649.  Google Scholar

[17]

D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Lecture Notes in Math., Springer, Berlin-New York, 957 (1982), 97-109.  doi: 10.1007/BFb0066235.  Google Scholar

[18]

N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642.  doi: 10.1007/s00208-005-0715-6.  Google Scholar

[19]

T. Kato, Strong Lp-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[20]

A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[21]

H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.  Google Scholar

[22]

S. G. Kre$\check{{\rm i}}$n, Linear Differential Equations in Banach Spaces, Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971.  Google Scholar

[23]

I. Lasiecka, Unified theory for abstract parabolic boundary problems-A semigroup approach, Appl. Math. Optim., 6 (1980), 287-333.  doi: 10.1007/BF01442900.  Google Scholar

[24]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.  Google Scholar

[25]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext. Springer, New York, 2009.  Google Scholar

[26]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[27]

C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187. North-Holland Publishing Co., Amsterdam, 2001.  Google Scholar

[28]

A. Rodriguez-Bernal, Existence, Uniqueness and Regularity of Solutions of Nonlinear Evolution Equations in Extended Scales of Hilbert Spaces, CDSNS91-61 Report, Georgia Institute of Technology, Atlanta, 1991. Google Scholar

[29]

H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[30]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[31]

W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551.  doi: 10.2140/pjm.1966.19.543.  Google Scholar

[32]

R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.  Google Scholar

[33]

R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43.  doi: 10.1016/0022-1236(75)90052-X.  Google Scholar

[34]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. doi: 10.1097/00005768-199805001-01817.  Google Scholar

[35]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.  Google Scholar

[36]

W. von Wahl, Global solutions to evolution equations of parabolic type, Differential Equations in Banach Spaces, Lecture Notes in Math., Springer, Berlin, 1223 (1986), 254-266.  doi: 10.1007/BFb0099198.  Google Scholar

[37]

Y. Wang and T. Liang, Mild solutions to the time fractional Navier-Stokes delay differential inclusions, Discrete Contin. Dyn. Syst. Series B, 24 (2019), 3713-3740.   Google Scholar

[38]

J. H. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations, (2001), 13 pp. doi: 10.1111/1468-0262.00185.  Google Scholar

[39]

A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.  Google Scholar

[1]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[2]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[3]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[4]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[5]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[6]

Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769

[7]

I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191

[8]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[9]

T. Tachim Medjo. Multi-layer quasi-geostrophic equations of the ocean with delays. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 171-196. doi: 10.3934/dcdsb.2008.10.171

[10]

May Ramzi, Zahrouni Ezzeddine. Global existence of solutions for subcritical quasi-geostrophic equations. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1179-1191. doi: 10.3934/cpaa.2008.7.1179

[11]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[12]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[13]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[14]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[15]

Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107

[16]

Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations & Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1

[17]

Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465

[18]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[19]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[20]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (16)
  • HTML views (32)
  • Cited by (0)

Other articles
by authors

[Back to Top]