\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Critical and super-critical abstract parabolic equations

This work was supported by NSF of China (Grants No. 41875084, 11571153), the Fundamental Research Funds for the Central Universities under Grant Nos. lzujbky-2018-ot03 and lzujbky-2018-it58

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Our purpose is to formulate an abstract result, motivated by the recent paper [8], allowing to treat the solutions of critical and super-critical equations as limits of solutions to their regularizations. In both cases we are improving the viscosity, making it stronger, solving the obtained regularizations with the use of Dan Henry's technique, then passing to the limit in the improved viscosity term to get a solution of the limit problem. While in case of the critical problems we will just consider a 'bit higher' fractional power of the viscosity term, for super-critical problems we need to use a version of the 'vanishing viscosity technique' that comes back to the considerations of E. Hopf, O.A. Oleinik, P.D. Lax and J.-L. Lions from 1950th. In both cases, the key to that method are the uniform with respect to the parameter estimates of the approximating solutions. The abstract result is illustrated with the Navier-Stokes equation in space dimensions 2 to 4, and with the 2-D quasi-geostrophic equation. Various technical estimates related to that problems and their fractional generalizations are also presented in the paper.

    Mathematics Subject Classification: Primary: 35A25, 35Q30, 26A33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. A. AdamsSobolev Spaces, Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975. 
    [2] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Monographs in Mathematics, 89. Birkhäuser Boston, Inc., Boston, MA, 1995. doi: 10.1007/978-3-0348-9221-6.
    [3] J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.  doi: 10.2307/118154.
    [4] J. W. Cholewa and  T. DlotkoGlobal Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, 278. Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511526404.
    [5] J. W. Cholewa and T. Dlotko, Fractional Navier-Stokes equations, Discrete Contin. Dyn. Syst. Series B, 23 (2018), 2967-2988.  doi: 10.3934/dcdsb.2017149.
    [6] A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Commun. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.
    [7] A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natl. Acad. Sci. USA, 100 (2003), 15316-15317.  doi: 10.1073/pnas.2036515100.
    [8] T. Dlotko, Navier-Stokes equation and its fractional approximations, Appl. Math. Optim., 77 (2018), 99-128.  doi: 10.1007/s00245-016-9368-y.
    [9] T. DlotkoM. B. Kania and C. Y. Sun, Quasi-geostrophic equation in $ \mathbb{R}^2$, J. Differential Equations, 259 (2015), 531-561.  doi: 10.1016/j.jde.2015.02.022.
    [10] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science Publishers, Inc., Hauppauge, NY, 2003.
    [11] C. FoiasD. D. Holm and E. S. Titi, The Navier-Stokes-alpha model of fluid turbulence, Physica D, 152/153 (2001), 505-519.  doi: 10.1016/S0167-2789(01)00191-9.
    [12] Y. Giga, Analyticity of the semigroup generated by the Stokes operator in Lr spaces, Math. Z., 178 (1981), 297-329.  doi: 10.1007/BF01214869.
    [13] Y. Giga and T. Miyakawa, Solutions in Lr of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89 (1985), 267-281.  doi: 10.1007/BF00276875.
    [14] L. Grafakos and S. Oh, The Kato-Ponce inequality, Comm. Partial Differential Equations, 39 (2014), 1128-1157.  doi: 10.1080/03605302.2013.822885.
    [15] B. L. GuoD. W. HuangQ. X. Li and C. Y. Sun, Dynamics for a generalized incompressible Navier-Stokes equations in $ \mathbb{R}^2$, Adv. Nonlinear Stud., 16 (2016), 249-272.  doi: 10.1515/ans-2015-5018.
    [16] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840. Springer-Verlag, Berlin-New York, 1981. doi: 10.1007/BFb0089649.
    [17] D. B. Henry, How to remember the Sobolev inequalities, Differential Equations, Lecture Notes in Math., Springer, Berlin-New York, 957 (1982), 97-109.  doi: 10.1007/BFb0066235.
    [18] N. Ju, Global solutions to the two dimensional quasi-geostrophic equation with critical or super-critical dissipation, Math. Ann., 334 (2006), 627-642.  doi: 10.1007/s00208-005-0715-6.
    [19] T. Kato, Strong Lp-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.
    [20] A. KiselevF. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.  doi: 10.1007/s00222-006-0020-3.
    [21] H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285-346.  doi: 10.2140/pjm.1966.19.285.
    [22] S. G. Kre$\check{{\rm i}}$n, Linear Differential Equations in Banach Spaces, Translations of Mathematical Monographs, Vol. 29, American Mathematical Society, Providence, R.I., 1971.
    [23] I. Lasiecka, Unified theory for abstract parabolic boundary problems-A semigroup approach, Appl. Math. Optim., 6 (1980), 287-333.  doi: 10.1007/BF01442900.
    [24] J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.  doi: 10.1007/BF02547354.
    [25] F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext. Springer, New York, 2009.
    [26] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.
    [27] C. Martínez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies, 187. North-Holland Publishing Co., Amsterdam, 2001.
    [28] A. Rodriguez-Bernal, Existence, Uniqueness and Regularity of Solutions of Nonlinear Evolution Equations in Extended Scales of Hilbert Spaces, CDSNS91-61 Report, Georgia Institute of Technology, Atlanta, 1991.
    [29] H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 2001. doi: 10.1007/978-3-0348-8255-2.
    [30] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
    [31] W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543-551.  doi: 10.2140/pjm.1966.19.543.
    [32] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. doi: 10.1115/1.3424338.
    [33] R. Temam, On the Euler equations of incompressible perfect fluids, J. Functional Analysis, 20 (1975), 32-43.  doi: 10.1016/0022-1236(75)90052-X.
    [34] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. doi: 10.1097/00005768-199805001-01817.
    [35] W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg, Braunschweig/Wiesbaden, 1985. doi: 10.1007/978-3-663-13911-9.
    [36] W. von Wahl, Global solutions to evolution equations of parabolic type, Differential Equations in Banach Spaces, Lecture Notes in Math., Springer, Berlin, 1223 (1986), 254-266.  doi: 10.1007/BFb0099198.
    [37] Y. Wang and T. Liang, Mild solutions to the time fractional Navier-Stokes delay differential inclusions, Discrete Contin. Dyn. Syst. Series B, 24 (2019), 3713-3740. 
    [38] J. H. Wu, Dissipative quasi-geostrophic equations with Lp data, Electron. J. Differential Equations, (2001), 13 pp. doi: 10.1111/1468-0262.00185.
    [39] A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-04631-5.
  • 加载中
SHARE

Article Metrics

HTML views(1899) PDF downloads(364) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return