[1]
|
Q. Ai, H.-Y. Li and Z.-Q. Wang, Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127 (2018), 196-210.
doi: 10.1016/j.apnum.2018.01.003.
|
[2]
|
C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 5 (1997), 209-485.
doi: 10.1016/S1570-8659(97)80003-8.
|
[3]
|
J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications, Inc., Mineola, NY, 2001.
|
[4]
|
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-540-30726-6.
|
[5]
|
D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series m: Monographs, 8. Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-540-46783-0.
|
[6]
|
D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977.
doi: 10.1137/1.9781611970425.
|
[7]
|
B.-Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
doi: 10.1142/3662.
|
[8]
|
W. Z. Huang and D. M. Sloan, The pseudospectral method for third-order differential equations, SIAM J. Numer. Anal., 29 (1992), 1626-1647.
doi: 10.1137/0729094.
|
[9]
|
J.-M. Li, Z.-Q. Wang and H.-Y. Li, Fully diagonalized Chebyshev spectral methods for second and fourth order elliptic boundary value problems, Int. J. Numer. Anal. Model., 15 (2018), 243-259.
doi: 10.1016/j.apnum.2018.01.003.
|
[10]
|
F.-J. Liu, H.-Y. Li and Z.-Q. Wang, A fully diagonalized spectral method using generalized Laguerre functions on the half line, Adv. Comput. Math., 43 (2017), 1227-1259.
doi: 10.1007/s10444-017-9522-3.
|
[11]
|
F.-J. Liu, H.-Y. Li and Z.-Q. Wang, Spectral methods using generalized Laguerre functions for second and fourth order problems, Numer. Algor., 75 (2017), 1005-1040.
doi: 10.1007/s11075-016-0228-2.
|
[12]
|
H. P. Ma and W. W. Sun, A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), 1425-1438.
doi: 10.1137/S0036142999361505.
|
[13]
|
H. P. Ma and W. W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394.
doi: 10.1137/S0036142900378327.
|
[14]
|
W. J. Merryfield and B. Shizgal, Properties of collocation third-derivative operators, J. Comput. Phys., 105 (1993), 182-185.
doi: 10.1006/jcph.1993.1065.
|
[15]
|
J. Shen, Efficient spectral-Galerkin method. Ⅰ. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089.
|
[16]
|
J. Shen, Efficient spectral-Galerkin method. Ⅱ. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87.
doi: 10.1137/0916006.
|
[17]
|
J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KdV equation, SIAM J. Numer. Anal., 41 (2003), 1595-1619.
doi: 10.1137/S0036142902410271.
|
[18]
|
J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-540-71041-7.
|
[19]
|
J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710-720.
doi: 10.1016/j.apnum.2006.07.012.
|
[20]
|
J. Shen and L.-L. Wang, Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3785-3797.
doi: 10.1016/j.cma.2006.10.031.
|