\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations

  • * Corresponding author

    * Corresponding author

This work was supported in part by National Natural Science Foundation of China (Nos. 11601331 and 11571238)

Abstract / Introduction Full Text(HTML) Figure(6) / Table(4) Related Papers Cited by
  • Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems. Accordingly, both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like series. Numerical results indicate that the suggested methods are extremely accurate and efficient, and suitable for the odd-order equations.

    Mathematics Subject Classification: 65N35, 33C45, 35J58.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Numerical errors of scheme (20)

    Figure 2.  Numerical errors of scheme (20)

    Figure 3.  Numerical errors of scheme (41)

    Figure 4.  Numerical errors of scheme (41)

    Figure 5.  Numerical errors of scheme (59)

    Figure 6.  Numerical errors of scheme (59)

    Table 1.  Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (19)

    $ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
    $ \alpha(p_k, q_l) $ 3.1644e+05 2.3889e+07 3.3847e+08 2.3036e+09 1.0362e+10
    $ \beta(p_k, \partial_xq_l) $ 1.5106e+04 3.6487e+05 2.5120e+06 1.0070e+07 2.9818e+07
    $ \gamma(\partial_xp_k, \partial_xq_l) $ 2.4015e+03 3.9365e+04 2.0296e+05 6.4966e+05 1.6010e+06
    $ (\partial_xp_k, \partial^2_xq_l) $ 2.5926e+02 2.3471e+03 8.4079e+03 2.0652e+04 4.1318e+04
    $ \mathcal{A}(p_k, q_l) $ 2.5961e+02 2.3422e+03 8.3910e+03 2.0616e+04 4.1257e+04
     | Show Table
    DownLoad: CSV

    Table 2.  Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (19)

    $ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
    $ \alpha(\varphi_k, \psi_l) $ 8.2281e+02 1.0014e+04 4.6167e+04 1.3919e+05 3.3027e+05
    $ \beta(\varphi_k, \partial_x\psi_l) $ 4.2539e+01 1.6248e+02 3.6050e+02 6.3660e+02 9.9077e+02
    $ \gamma(\partial_x\varphi_k, \partial_x\psi_l) $ 1.3709e+00 1.3731e+00 1.3734e+00 1.3736e+00 1.3736e+00
    $ (\partial_x\varphi_k, \partial^2_x\psi_l) $ 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00
    $ \mathcal{A}(\varphi_k, \psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
     | Show Table
    DownLoad: CSV

    Table 3.  Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (39)

    $ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
    $ \alpha(r_k, s_l) $ 2.2919e+07 1.4122e+10 7.8699e+11 1.4829e+13 1.5013e+14
    $ \beta(\partial_xr_k, \partial^2_xs_l) $ 1.0527e+05 1.1264e+07 1.8445e+08 1.3612e+09 6.4521e+09
    $ (\partial^2_xr_k, \partial^3_xs_l) $ 3.7507e+03 1.3987e+05 1.1653e+06 5.2074e+06 1.6553e+07
    $ \mathcal{B}(r_k, s_l) $ 3.7593e+03 1.3996e+05 1.1656e+06 5.2083e+06 1.6555e+07
     | Show Table
    DownLoad: CSV

    Table 4.  Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (39)

    $ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
    $ \alpha(\Phi_k, \Psi_l) $ 6.1180e+06 2.2260e+09 8.8437e+10 1.2957e+12 1.0730e+13
    $ \beta(\partial_x\Phi_k, \partial^2_x\Psi_l) $ 5.1022e+02 5.8057e+03 2.6067e+04 7.7483e+04 1.8226e+05
    $ (\partial^2_x\Phi_k, \partial^3_x\Psi_l) $ 1.0683e+00 1.0684e+00 1.0684e+00 1.0684e+00 1.0684e+00
    $ \mathcal{B}(\Phi_k, \Psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
     | Show Table
    DownLoad: CSV
  • [1] Q. AiH.-Y. Li and Z.-Q. Wang, Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127 (2018), 196-210.  doi: 10.1016/j.apnum.2018.01.003.
    [2] C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 5 (1997), 209-485.  doi: 10.1016/S1570-8659(97)80003-8.
    [3] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications, Inc., Mineola, NY, 2001.
    [4] C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. doi: 10.1007/978-3-540-30726-6.
    [5] D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series m: Monographs, 8. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-540-46783-0.
    [6] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. doi: 10.1137/1.9781611970425.
    [7] B.-Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/3662.
    [8] W. Z. Huang and D. M. Sloan, The pseudospectral method for third-order differential equations, SIAM J. Numer. Anal., 29 (1992), 1626-1647.  doi: 10.1137/0729094.
    [9] J.-M. LiZ.-Q. Wang and H.-Y. Li, Fully diagonalized Chebyshev spectral methods for second and fourth order elliptic boundary value problems, Int. J. Numer. Anal. Model., 15 (2018), 243-259.  doi: 10.1016/j.apnum.2018.01.003.
    [10] F.-J. LiuH.-Y. Li and Z.-Q. Wang, A fully diagonalized spectral method using generalized Laguerre functions on the half line, Adv. Comput. Math., 43 (2017), 1227-1259.  doi: 10.1007/s10444-017-9522-3.
    [11] F.-J. LiuH.-Y. Li and Z.-Q. Wang, Spectral methods using generalized Laguerre functions for second and fourth order problems, Numer. Algor., 75 (2017), 1005-1040.  doi: 10.1007/s11075-016-0228-2.
    [12] H. P. Ma and W. W. Sun, A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), 1425-1438.  doi: 10.1137/S0036142999361505.
    [13] H. P. Ma and W. W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394.  doi: 10.1137/S0036142900378327.
    [14] W. J. Merryfield and B. Shizgal, Properties of collocation third-derivative operators, J. Comput. Phys., 105 (1993), 182-185.  doi: 10.1006/jcph.1993.1065.
    [15] J. Shen, Efficient spectral-Galerkin method. Ⅰ. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.  doi: 10.1137/0915089.
    [16] J. Shen, Efficient spectral-Galerkin method. Ⅱ. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87.  doi: 10.1137/0916006.
    [17] J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KdV equation, SIAM J. Numer. Anal., 41 (2003), 1595-1619.  doi: 10.1137/S0036142902410271.
    [18] J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-71041-7.
    [19] J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710-720.  doi: 10.1016/j.apnum.2006.07.012.
    [20] J. Shen and L.-L. Wang, Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3785-3797.  doi: 10.1016/j.cma.2006.10.031.
  • 加载中

Figures(6)

Tables(4)

SHARE

Article Metrics

HTML views(1735) PDF downloads(257) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return