# American Institute of Mathematical Sciences

April  2020, 25(4): 1543-1563. doi: 10.3934/dcdsb.2019239

## Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations

 School of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Corresponding author

Received  January 2019 Revised  June 2019 Published  November 2019

Fund Project: This work was supported in part by National Natural Science Foundation of China (Nos. 11601331 and 11571238)

Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems. Accordingly, both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like series. Numerical results indicate that the suggested methods are extremely accurate and efficient, and suitable for the odd-order equations.

Citation: Shan Li, Shi-Mi Yan, Zhong-Qing Wang. Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1543-1563. doi: 10.3934/dcdsb.2019239
##### References:

show all references

##### References:
Numerical errors of scheme (20)
Numerical errors of scheme (20)
Numerical errors of scheme (41)
Numerical errors of scheme (41)
Numerical errors of scheme (59)
Numerical errors of scheme (59)
Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (19)
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(p_k, q_l)$ 3.1644e+05 2.3889e+07 3.3847e+08 2.3036e+09 1.0362e+10 $\beta(p_k, \partial_xq_l)$ 1.5106e+04 3.6487e+05 2.5120e+06 1.0070e+07 2.9818e+07 $\gamma(\partial_xp_k, \partial_xq_l)$ 2.4015e+03 3.9365e+04 2.0296e+05 6.4966e+05 1.6010e+06 $(\partial_xp_k, \partial^2_xq_l)$ 2.5926e+02 2.3471e+03 8.4079e+03 2.0652e+04 4.1318e+04 $\mathcal{A}(p_k, q_l)$ 2.5961e+02 2.3422e+03 8.3910e+03 2.0616e+04 4.1257e+04
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(p_k, q_l)$ 3.1644e+05 2.3889e+07 3.3847e+08 2.3036e+09 1.0362e+10 $\beta(p_k, \partial_xq_l)$ 1.5106e+04 3.6487e+05 2.5120e+06 1.0070e+07 2.9818e+07 $\gamma(\partial_xp_k, \partial_xq_l)$ 2.4015e+03 3.9365e+04 2.0296e+05 6.4966e+05 1.6010e+06 $(\partial_xp_k, \partial^2_xq_l)$ 2.5926e+02 2.3471e+03 8.4079e+03 2.0652e+04 4.1318e+04 $\mathcal{A}(p_k, q_l)$ 2.5961e+02 2.3422e+03 8.3910e+03 2.0616e+04 4.1257e+04
Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (19)
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(\varphi_k, \psi_l)$ 8.2281e+02 1.0014e+04 4.6167e+04 1.3919e+05 3.3027e+05 $\beta(\varphi_k, \partial_x\psi_l)$ 4.2539e+01 1.6248e+02 3.6050e+02 6.3660e+02 9.9077e+02 $\gamma(\partial_x\varphi_k, \partial_x\psi_l)$ 1.3709e+00 1.3731e+00 1.3734e+00 1.3736e+00 1.3736e+00 $(\partial_x\varphi_k, \partial^2_x\psi_l)$ 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00 $\mathcal{A}(\varphi_k, \psi_l)$ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(\varphi_k, \psi_l)$ 8.2281e+02 1.0014e+04 4.6167e+04 1.3919e+05 3.3027e+05 $\beta(\varphi_k, \partial_x\psi_l)$ 4.2539e+01 1.6248e+02 3.6050e+02 6.3660e+02 9.9077e+02 $\gamma(\partial_x\varphi_k, \partial_x\psi_l)$ 1.3709e+00 1.3731e+00 1.3734e+00 1.3736e+00 1.3736e+00 $(\partial_x\varphi_k, \partial^2_x\psi_l)$ 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00 $\mathcal{A}(\varphi_k, \psi_l)$ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (39)
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(r_k, s_l)$ 2.2919e+07 1.4122e+10 7.8699e+11 1.4829e+13 1.5013e+14 $\beta(\partial_xr_k, \partial^2_xs_l)$ 1.0527e+05 1.1264e+07 1.8445e+08 1.3612e+09 6.4521e+09 $(\partial^2_xr_k, \partial^3_xs_l)$ 3.7507e+03 1.3987e+05 1.1653e+06 5.2074e+06 1.6553e+07 $\mathcal{B}(r_k, s_l)$ 3.7593e+03 1.3996e+05 1.1656e+06 5.2083e+06 1.6555e+07
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(r_k, s_l)$ 2.2919e+07 1.4122e+10 7.8699e+11 1.4829e+13 1.5013e+14 $\beta(\partial_xr_k, \partial^2_xs_l)$ 1.0527e+05 1.1264e+07 1.8445e+08 1.3612e+09 6.4521e+09 $(\partial^2_xr_k, \partial^3_xs_l)$ 3.7507e+03 1.3987e+05 1.1653e+06 5.2074e+06 1.6553e+07 $\mathcal{B}(r_k, s_l)$ 3.7593e+03 1.3996e+05 1.1656e+06 5.2083e+06 1.6555e+07
Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (39)
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(\Phi_k, \Psi_l)$ 6.1180e+06 2.2260e+09 8.8437e+10 1.2957e+12 1.0730e+13 $\beta(\partial_x\Phi_k, \partial^2_x\Psi_l)$ 5.1022e+02 5.8057e+03 2.6067e+04 7.7483e+04 1.8226e+05 $(\partial^2_x\Phi_k, \partial^3_x\Psi_l)$ 1.0683e+00 1.0684e+00 1.0684e+00 1.0684e+00 1.0684e+00 $\mathcal{B}(\Phi_k, \Psi_l)$ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
 $\rm Matrices$ $N=20$ $N=40$ $N=60$ $N=80$ $N=100$ $\alpha(\Phi_k, \Psi_l)$ 6.1180e+06 2.2260e+09 8.8437e+10 1.2957e+12 1.0730e+13 $\beta(\partial_x\Phi_k, \partial^2_x\Psi_l)$ 5.1022e+02 5.8057e+03 2.6067e+04 7.7483e+04 1.8226e+05 $(\partial^2_x\Phi_k, \partial^3_x\Psi_l)$ 1.0683e+00 1.0684e+00 1.0684e+00 1.0684e+00 1.0684e+00 $\mathcal{B}(\Phi_k, \Psi_l)$ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
 [1] Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381 [2] Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442 [3] Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525 [4] Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299 [5] Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021 [6] Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043 [7] Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 [8] Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283 [9] Enrique Fernández-Cara, Irene Marín-Gayte. Theoretical and numerical results for some bi-objective optimal control problems. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2101-2126. doi: 10.3934/cpaa.2020093 [10] Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039 [11] Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906 [12] Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 [13] Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529 [14] Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 [15] W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357 [16] Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115 [17] Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685 [18] Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147 [19] Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295 [20] Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

2018 Impact Factor: 1.008

## Tools

Article outline

Figures and Tables