• Previous Article
    A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure
  • DCDS-B Home
  • This Issue
  • Next Article
    Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set
doi: 10.3934/dcdsb.2019239

Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations

School of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

* Corresponding author

Received  January 2019 Revised  June 2019 Published  November 2019

Fund Project: This work was supported in part by National Natural Science Foundation of China (Nos. 11601331 and 11571238)

Efficient Legendre dual-Petrov-Galerkin methods for solving odd-order differential equations are proposed. Some Sobolev bi-orthogonal basis functions are constructed which lead to the diagonalization of discrete systems. Accordingly, both the exact solutions and the approximate solutions can be represented as infinite and truncated Fourier-like series. Numerical results indicate that the suggested methods are extremely accurate and efficient, and suitable for the odd-order equations.

Citation: Shan Li, Shi-Mi Yan, Zhong-Qing Wang. Efficient Legendre dual-Petrov-Galerkin methods for odd-order differential equations. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019239
References:
[1]

Q. AiH.-Y. Li and Z.-Q. Wang, Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127 (2018), 196-210.  doi: 10.1016/j.apnum.2018.01.003.  Google Scholar

[2]

C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 5 (1997), 209-485.  doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[3]

J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications, Inc., Mineola, NY, 2001.  Google Scholar

[4]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. doi: 10.1007/978-3-540-30726-6.  Google Scholar

[5]

D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series m: Monographs, 8. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-540-46783-0.  Google Scholar

[6]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. doi: 10.1137/1.9781611970425.  Google Scholar

[7]

B.-Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/3662.  Google Scholar

[8]

W. Z. Huang and D. M. Sloan, The pseudospectral method for third-order differential equations, SIAM J. Numer. Anal., 29 (1992), 1626-1647.  doi: 10.1137/0729094.  Google Scholar

[9]

J.-M. LiZ.-Q. Wang and H.-Y. Li, Fully diagonalized Chebyshev spectral methods for second and fourth order elliptic boundary value problems, Int. J. Numer. Anal. Model., 15 (2018), 243-259.  doi: 10.1016/j.apnum.2018.01.003.  Google Scholar

[10]

F.-J. LiuH.-Y. Li and Z.-Q. Wang, A fully diagonalized spectral method using generalized Laguerre functions on the half line, Adv. Comput. Math., 43 (2017), 1227-1259.  doi: 10.1007/s10444-017-9522-3.  Google Scholar

[11]

F.-J. LiuH.-Y. Li and Z.-Q. Wang, Spectral methods using generalized Laguerre functions for second and fourth order problems, Numer. Algor., 75 (2017), 1005-1040.  doi: 10.1007/s11075-016-0228-2.  Google Scholar

[12]

H. P. Ma and W. W. Sun, A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), 1425-1438.  doi: 10.1137/S0036142999361505.  Google Scholar

[13]

H. P. Ma and W. W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394.  doi: 10.1137/S0036142900378327.  Google Scholar

[14]

W. J. Merryfield and B. Shizgal, Properties of collocation third-derivative operators, J. Comput. Phys., 105 (1993), 182-185.  doi: 10.1006/jcph.1993.1065.  Google Scholar

[15]

J. Shen, Efficient spectral-Galerkin method. Ⅰ. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.  doi: 10.1137/0915089.  Google Scholar

[16]

J. Shen, Efficient spectral-Galerkin method. Ⅱ. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87.  doi: 10.1137/0916006.  Google Scholar

[17]

J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KdV equation, SIAM J. Numer. Anal., 41 (2003), 1595-1619.  doi: 10.1137/S0036142902410271.  Google Scholar

[18]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[19]

J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710-720.  doi: 10.1016/j.apnum.2006.07.012.  Google Scholar

[20]

J. Shen and L.-L. Wang, Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3785-3797.  doi: 10.1016/j.cma.2006.10.031.  Google Scholar

show all references

References:
[1]

Q. AiH.-Y. Li and Z.-Q. Wang, Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127 (2018), 196-210.  doi: 10.1016/j.apnum.2018.01.003.  Google Scholar

[2]

C. Bernardi and Y. Maday, Spectral methods, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 5 (1997), 209-485.  doi: 10.1016/S1570-8659(97)80003-8.  Google Scholar

[3]

J. P. Boyd, Chebyshev and Fourier Spectral Methods, Second edition, Dover Publications, Inc., Mineola, NY, 2001.  Google Scholar

[4]

C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. doi: 10.1007/978-3-540-30726-6.  Google Scholar

[5]

D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series m: Monographs, 8. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-540-46783-0.  Google Scholar

[6]

D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1977. doi: 10.1137/1.9781611970425.  Google Scholar

[7]

B.-Y. Guo, Spectral Methods and Their Applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi: 10.1142/3662.  Google Scholar

[8]

W. Z. Huang and D. M. Sloan, The pseudospectral method for third-order differential equations, SIAM J. Numer. Anal., 29 (1992), 1626-1647.  doi: 10.1137/0729094.  Google Scholar

[9]

J.-M. LiZ.-Q. Wang and H.-Y. Li, Fully diagonalized Chebyshev spectral methods for second and fourth order elliptic boundary value problems, Int. J. Numer. Anal. Model., 15 (2018), 243-259.  doi: 10.1016/j.apnum.2018.01.003.  Google Scholar

[10]

F.-J. LiuH.-Y. Li and Z.-Q. Wang, A fully diagonalized spectral method using generalized Laguerre functions on the half line, Adv. Comput. Math., 43 (2017), 1227-1259.  doi: 10.1007/s10444-017-9522-3.  Google Scholar

[11]

F.-J. LiuH.-Y. Li and Z.-Q. Wang, Spectral methods using generalized Laguerre functions for second and fourth order problems, Numer. Algor., 75 (2017), 1005-1040.  doi: 10.1007/s11075-016-0228-2.  Google Scholar

[12]

H. P. Ma and W. W. Sun, A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal., 38 (2000), 1425-1438.  doi: 10.1137/S0036142999361505.  Google Scholar

[13]

H. P. Ma and W. W. Sun, Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation, SIAM J. Numer. Anal., 39 (2001), 1380-1394.  doi: 10.1137/S0036142900378327.  Google Scholar

[14]

W. J. Merryfield and B. Shizgal, Properties of collocation third-derivative operators, J. Comput. Phys., 105 (1993), 182-185.  doi: 10.1006/jcph.1993.1065.  Google Scholar

[15]

J. Shen, Efficient spectral-Galerkin method. Ⅰ. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.  doi: 10.1137/0915089.  Google Scholar

[16]

J. Shen, Efficient spectral-Galerkin method. Ⅱ. Direct solvers of second- and fourth-order equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16 (1995), 74-87.  doi: 10.1137/0916006.  Google Scholar

[17]

J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KdV equation, SIAM J. Numer. Anal., 41 (2003), 1595-1619.  doi: 10.1137/S0036142902410271.  Google Scholar

[18]

J. Shen, T. Tang and L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-540-71041-7.  Google Scholar

[19]

J. Shen and L.-L. Wang, Fourierization of the Legendre-Galerkin method and a new space-time spectral method, Appl. Numer. Math., 57 (2007), 710-720.  doi: 10.1016/j.apnum.2006.07.012.  Google Scholar

[20]

J. Shen and L.-L. Wang, Legendre and Chebyshev dual-Petrov-Galerkin methods for hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3785-3797.  doi: 10.1016/j.cma.2006.10.031.  Google Scholar

Figure 1.  Numerical errors of scheme (20)
Figure 2.  Numerical errors of scheme (20)
Figure 3.  Numerical errors of scheme (41)
Figure 4.  Numerical errors of scheme (41)
Figure 5.  Numerical errors of scheme (59)
Figure 6.  Numerical errors of scheme (59)
Table 1.  Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (19)
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(p_k, q_l) $ 3.1644e+05 2.3889e+07 3.3847e+08 2.3036e+09 1.0362e+10
$ \beta(p_k, \partial_xq_l) $ 1.5106e+04 3.6487e+05 2.5120e+06 1.0070e+07 2.9818e+07
$ \gamma(\partial_xp_k, \partial_xq_l) $ 2.4015e+03 3.9365e+04 2.0296e+05 6.4966e+05 1.6010e+06
$ (\partial_xp_k, \partial^2_xq_l) $ 2.5926e+02 2.3471e+03 8.4079e+03 2.0652e+04 4.1318e+04
$ \mathcal{A}(p_k, q_l) $ 2.5961e+02 2.3422e+03 8.3910e+03 2.0616e+04 4.1257e+04
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(p_k, q_l) $ 3.1644e+05 2.3889e+07 3.3847e+08 2.3036e+09 1.0362e+10
$ \beta(p_k, \partial_xq_l) $ 1.5106e+04 3.6487e+05 2.5120e+06 1.0070e+07 2.9818e+07
$ \gamma(\partial_xp_k, \partial_xq_l) $ 2.4015e+03 3.9365e+04 2.0296e+05 6.4966e+05 1.6010e+06
$ (\partial_xp_k, \partial^2_xq_l) $ 2.5926e+02 2.3471e+03 8.4079e+03 2.0652e+04 4.1318e+04
$ \mathcal{A}(p_k, q_l) $ 2.5961e+02 2.3422e+03 8.3910e+03 2.0616e+04 4.1257e+04
Table 2.  Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (19)
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(\varphi_k, \psi_l) $ 8.2281e+02 1.0014e+04 4.6167e+04 1.3919e+05 3.3027e+05
$ \beta(\varphi_k, \partial_x\psi_l) $ 4.2539e+01 1.6248e+02 3.6050e+02 6.3660e+02 9.9077e+02
$ \gamma(\partial_x\varphi_k, \partial_x\psi_l) $ 1.3709e+00 1.3731e+00 1.3734e+00 1.3736e+00 1.3736e+00
$ (\partial_x\varphi_k, \partial^2_x\psi_l) $ 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00
$ \mathcal{A}(\varphi_k, \psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(\varphi_k, \psi_l) $ 8.2281e+02 1.0014e+04 4.6167e+04 1.3919e+05 3.3027e+05
$ \beta(\varphi_k, \partial_x\psi_l) $ 4.2539e+01 1.6248e+02 3.6050e+02 6.3660e+02 9.9077e+02
$ \gamma(\partial_x\varphi_k, \partial_x\psi_l) $ 1.3709e+00 1.3731e+00 1.3734e+00 1.3736e+00 1.3736e+00
$ (\partial_x\varphi_k, \partial^2_x\psi_l) $ 1.3826e+00 1.3842e+00 1.3846e+00 1.3848e+00 1.3848e+00
$ \mathcal{A}(\varphi_k, \psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
Table 3.  Condition numbers of the usual Legendre dual-Petrov-Galerkin method for problem (39)
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(r_k, s_l) $ 2.2919e+07 1.4122e+10 7.8699e+11 1.4829e+13 1.5013e+14
$ \beta(\partial_xr_k, \partial^2_xs_l) $ 1.0527e+05 1.1264e+07 1.8445e+08 1.3612e+09 6.4521e+09
$ (\partial^2_xr_k, \partial^3_xs_l) $ 3.7507e+03 1.3987e+05 1.1653e+06 5.2074e+06 1.6553e+07
$ \mathcal{B}(r_k, s_l) $ 3.7593e+03 1.3996e+05 1.1656e+06 5.2083e+06 1.6555e+07
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(r_k, s_l) $ 2.2919e+07 1.4122e+10 7.8699e+11 1.4829e+13 1.5013e+14
$ \beta(\partial_xr_k, \partial^2_xs_l) $ 1.0527e+05 1.1264e+07 1.8445e+08 1.3612e+09 6.4521e+09
$ (\partial^2_xr_k, \partial^3_xs_l) $ 3.7507e+03 1.3987e+05 1.1653e+06 5.2074e+06 1.6553e+07
$ \mathcal{B}(r_k, s_l) $ 3.7593e+03 1.3996e+05 1.1656e+06 5.2083e+06 1.6555e+07
Table 4.  Condition numbers of our new Legendre dual-Petrov-Galerkin method for problem (39)
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(\Phi_k, \Psi_l) $ 6.1180e+06 2.2260e+09 8.8437e+10 1.2957e+12 1.0730e+13
$ \beta(\partial_x\Phi_k, \partial^2_x\Psi_l) $ 5.1022e+02 5.8057e+03 2.6067e+04 7.7483e+04 1.8226e+05
$ (\partial^2_x\Phi_k, \partial^3_x\Psi_l) $ 1.0683e+00 1.0684e+00 1.0684e+00 1.0684e+00 1.0684e+00
$ \mathcal{B}(\Phi_k, \Psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
$ \rm Matrices $ $ N=20 $ $ N=40 $ $ N=60 $ $ N=80 $ $ N=100 $
$ \alpha(\Phi_k, \Psi_l) $ 6.1180e+06 2.2260e+09 8.8437e+10 1.2957e+12 1.0730e+13
$ \beta(\partial_x\Phi_k, \partial^2_x\Psi_l) $ 5.1022e+02 5.8057e+03 2.6067e+04 7.7483e+04 1.8226e+05
$ (\partial^2_x\Phi_k, \partial^3_x\Psi_l) $ 1.0683e+00 1.0684e+00 1.0684e+00 1.0684e+00 1.0684e+00
$ \mathcal{B}(\Phi_k, \Psi_l) $ 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00
[1]

Jie Shen, Li-Lian Wang. Laguerre and composite Legendre-Laguerre Dual-Petrov-Galerkin methods for third-order equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1381-1402. doi: 10.3934/dcdsb.2006.6.1381

[2]

Netra Khanal, Ramjee Sharma, Jiahong Wu, Juan-Ming Yuan. A dual-Petrov-Galerkin method for extended fifth-order Korteweg-de Vries type equations. Conference Publications, 2009, 2009 (Special) : 442-450. doi: 10.3934/proc.2009.2009.442

[3]

Juan-Ming Yuan, Jiahong Wu. A dual-Petrov-Galerkin method for two integrable fifth-order KdV type equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1525-1536. doi: 10.3934/dcds.2010.26.1525

[4]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[5]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[6]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[7]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[8]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[9]

Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039

[10]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[11]

Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677

[12]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[13]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[14]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[15]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[16]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems & Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[17]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[18]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[19]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[20]

Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]