May  2020, 25(5): 1623-1630. doi: 10.3934/dcdsb.2019243

Persistence properties for the generalized Camassa-Holm equation

1. 

College of Mathematics and Statistics, Yangtze Normal University, Fuling 408100, Chongqing, China

2. 

Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

3. 

College of Mathematics and and Statistics, Chongqing University, Chongqing 401331, China

Received  February 2019 Published  May 2020 Early access  November 2019

Fund Project: The first author is supported by NSF of China (Grant No: 11671055), NSF of Chongqing (Grant No: cstc2018jcyj AX0273) and Key project of science and technology research program of Chongqing Education Commission (Grant No: KJZD-K20180140). The second author is supported by NSF of China (Grant No: 11771062). The third author is supported by NSF of China (Grant No: 11601053).

In present paper, we study the Cauchy problem for a generalized Camassa-Holm equation, which was discovered by Novikov. Our purpose here is to establish persistence properties and some unique continuation properties of the solutions of this equation in weighted spaces.

Citation: Yongsheng Mi, Boling Guo, Chunlai Mu. Persistence properties for the generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1623-1630. doi: 10.3934/dcdsb.2019243
References:
[1]

A. Aldroubi and K. Grochenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.

[2]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., IMRN, 2012 (2012), 5161-5181.  doi: 10.1093/imrn/rnr218.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.

[4]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.  doi: 10.1006/jfan.1997.3231.

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc., Lond. A, 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.

[8]

A. Constantin and J. Escher, Particle trajectores in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.  doi: 10.1090/S0273-0979-07-01159-7.

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.

[10]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[11]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[12]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.

[13]

A. A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.

[14]

J. L. Li and Z. Y. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation, Nonlinear Anal. RWA., 28 (2016), 72-90.  doi: 10.1016/j.nonrwa.2015.09.003.

[15]

Y. S. MiY. LiuB. L. Guo and T. Luo, The Cauchy problem for a generalized Camassa-Holm equation, J. Differential Equations, 266 (2019), 6739-6770.  doi: 10.1016/j.jde.2018.11.019.

[16]

V. Novikov, Generalization of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14 pp. doi: 10.1088/1751-8113/42/34/342002.

[17]

S. M. Zhou, Persistence properties for a generalized Camassa-Holm equation in weighted $L^{p}$ spaces, J. Math. Anal. Appl., 410 (2014), 932-938.  doi: 10.1016/j.jmaa.2013.09.022.

show all references

References:
[1]

A. Aldroubi and K. Grochenig, Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43 (2001), 585-620.  doi: 10.1137/S0036144501386986.

[2]

L. Brandolese, Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces, Int. Math. Res. Not., IMRN, 2012 (2012), 5161-5181.  doi: 10.1093/imrn/rnr218.

[3]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.

[4]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.  doi: 10.1006/jfan.1997.3231.

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc., Lond. A, 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.

[7]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.

[8]

A. Constantin and J. Escher, Particle trajectores in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.  doi: 10.1090/S0273-0979-07-01159-7.

[9]

A. ConstantinV. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation, Inverse Problems, 22 (2006), 2197-2207.  doi: 10.1088/0266-5611/22/6/017.

[10]

A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[11]

A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[12]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D, 4 (1981/82), 47-66.  doi: 10.1016/0167-2789(81)90004-X.

[13]

A. A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.

[14]

J. L. Li and Z. Y. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation, Nonlinear Anal. RWA., 28 (2016), 72-90.  doi: 10.1016/j.nonrwa.2015.09.003.

[15]

Y. S. MiY. LiuB. L. Guo and T. Luo, The Cauchy problem for a generalized Camassa-Holm equation, J. Differential Equations, 266 (2019), 6739-6770.  doi: 10.1016/j.jde.2018.11.019.

[16]

V. Novikov, Generalization of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14 pp. doi: 10.1088/1751-8113/42/34/342002.

[17]

S. M. Zhou, Persistence properties for a generalized Camassa-Holm equation in weighted $L^{p}$ spaces, J. Math. Anal. Appl., 410 (2014), 932-938.  doi: 10.1016/j.jmaa.2013.09.022.

[1]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[2]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[3]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[4]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[5]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[6]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[7]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[8]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[9]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[10]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[11]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[12]

Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016

[13]

Rossen I. Ivanov. Conformal and Geometric Properties of the Camassa-Holm Hierarchy. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 545-554. doi: 10.3934/dcds.2007.19.545

[14]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[15]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[16]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[17]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[18]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[19]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[20]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (335)
  • HTML views (236)
  • Cited by (0)

Other articles
by authors

[Back to Top]