
-
Previous Article
A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure
- DCDS-B Home
- This Issue
-
Next Article
Persistence properties for the generalized Camassa-Holm equation
Stability and bifurcation analysis of Filippov food chain system with food chain control strategy
1. | School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China |
2. | Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt |
In the present work, we introduce a control model to describe three species food chain interaction model composed of prey, middle predator, and top predator. The middle predator preys on prey and the top predator preys on middle predator. The control techniques of the exploited natural resources are used to modulate the harvesting effort to avoid high risks of extinction of the middle predator and keep stability of the food chain, by prohibiting fishing when the population density drops below a prescribed threshold. The behavior of the system stability of the regular, virtual, pseudo-equilibrium and tangent points are discussed. The complicated non-smooth dynamic behaviors (sliding and crossing segment and their domains) are analyzed. The bifurcation set of pseudo-equilibrium and the sliding crossing bifurcation have been investigated. Our analytical findings are verified through numerical investigations.
References:
[1] |
V. Acary and B. Brogliato, Numerical Methods For Nonsmooth Dynamical Systems, Applications in Mechanics and Electronics, Springer-Verlag, New York, 2008. Google Scholar |
[2] |
A. Al-Khedhairi,
The chaos and control of food chain model using nonlinear feedback, Appl. Math. Sci., 3 (2009), 591-604.
|
[3] |
M. Banerjee, N. Mukherjee and V. Volpert,
Prey-Predator model with a nonlocal bistable dynamics of prey, Mathematics, 6 (2018), 1-13.
doi: 10.3390/math6030041. |
[4] |
S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications, John Wiley and Sons, 2001. Google Scholar |
[5] |
S. P. Bera, A. Maiti and G. P. Samanta,
Dynamics of a food chain model with herd behaviour of the prey, Model. Earth Syst. Environ., 2 (2016), 131-140.
doi: 10.1007/s40808-016-0189-4. |
[6] |
B. Brogliato, Impact in Mechanical Systems - Analysis and Modelling, Lecture Notes in Physics, 551, Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-45501-9. |
[7] |
B. Brogliato, Nonsmooth Mechanics - Models, Dynamics and Control, Communications and Control Engineering, Springer-Verlag, London, 1999.
doi: 10.1007/978-3-319-28664-8. |
[8] |
R. Casey, H. de Jong and J. L. Gouze,
Piecewise-linear models of genetic regulatory networks: Equilibria and their stability, J.Math.Biol., 52 (2006), 27-56.
doi: 10.1007/s00285-005-0338-2. |
[9] |
X. Chen and W. Zhang,
Normal forms of planar switching systems, Discrete Contin. Dyn. Syst.-A, 36 (2016), 6715-6736.
doi: 10.3934/dcds.2016092. |
[10] |
A. Colombo, N. D. Buono, L. Lopez and A. Pugliese,
Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems, Discrete Contin. Dyn. Syst.-B, 23 (2018), 2911-2934.
doi: 10.3934/dcdsb.2018166. |
[11] |
M. I. S. Costa and L. D. B. Faria,
Integrated pest management: theoretical insights from a threshold policy, Neotropical Entomology, 39 (2010), 1-8.
doi: 10.1590/S1519-566X2010000100001. |
[12] |
M. I. S. Costa and M. E. M. Meza,
Application of a threshold policy in the management of multispecies fisheries and predator culling, Math. Medicine and Bio.: A Journal of the IMA, 23 (2006), 63-75.
doi: 10.1093/imammb/dql005. |
[13] |
M. di Bernardo, C. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.
doi: 10.1007/978-1-84628-708-4. |
[14] |
M. di Bernardo, C. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. Olivar and P. T. Piiroinen,
Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.
doi: 10.1137/050625060. |
[15] |
M. di Bernardo, P. Kowalczyk and A. Nordmark,
Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205.
doi: 10.1016/S0167-2789(02)00547-X. |
[16] |
L. Dieci and F. Difonzo,
A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179.
doi: 10.1016/j.cam.2013.10.055. |
[17] |
A. F. Filippov,
Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964), 199-231.
|
[18] |
A. F. Filippov, Differential equations with discontinuous right-hand sides, Mathematics and Its Applications, Kluwer Academic, Dordrecht, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[19] |
H. I. Freedman and P. Waltman,
Mathematical analysis of some three species food-chain models, Math. Biosci., 33 (1977), 257-276.
doi: 10.1016/0025-5564(77)90142-0. |
[20] |
T. Gard,
Top predator persistence in differential equations models of food chains: The effects of omnivory and external forcing of lower trophic levels, J. Math. Biology, 14 (1982), 285-299.
doi: 10.1007/BF00275394. |
[21] |
K. Gupta and S. Gakkhar, The Filippov approach for predator-prey system involving mixed type of functional responses, Differential Eq. and Dynamical Syst., (2016), 1-21.
doi: 10.1007/s12591-016-0322-x. |
[22] |
A. Hastings and T. Powell,
Chaos in a three-species food chain, Ecology, 72 (1991), 896-903.
doi: 10.2307/1940591. |
[23] |
M. R. Jeffrey,
Dynamics at switching intersection: Hierarchy, isonomy and multiple-sliding, SIAM J. Appl. Dyn. Syst., 13 (2014), 1082-1105.
doi: 10.1137/13093368X. |
[24] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[25] |
W. S. Madasanjaya, M. Mamat, Z. Salleh, I. Mohd and N. M. Mohamad,
Numerical simulation dynamical model of three species food chain with Holling type-Ⅱ functional response, Malays. J. Math. Sci., 5 (2011), 1-12.
|
[26] |
K. Popp and P. Stelter,
Stick-slip vibrations and chaos, Phil. Tran.: Phys. Scie. and Eng., 332 (1990), 89-105.
doi: 10.1098/rsta.1990.0102. |
[27] |
F. D. Rossa and F. Dercole,
The transition from persistence to nonsmooth-fold scenarios in relay control system, IFAC Proceedings Volumes, 44 (2011), 13287-13292.
doi: 10.3182/20110828-6-IT-1002.01354. |
[28] |
J. M. Schumacher,
Time-scaling symmetry and Zeno solutions, Automatica, 45 (2009), 1237-1242.
doi: 10.1016/j.automatica.2008.12.008. |
[29] |
Z. Shuwen and T. Dejun,
Permanence in a food chain system with impulsive perturbations, Chaos Solitons Fractals, 40 (2009), 392-400.
doi: 10.1016/j.chaos.2007.07.074. |
[30] |
Z. Shuwen and C. Lansun,
A Holling Ⅱ functional response food chain model with impulsive perturbations, Chaos, Solitons and Fractals, 24 (2005), 1269-1278.
doi: 10.1016/j.chaos.2004.09.051. |
[31] |
S. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke,
Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.
doi: 10.1137/110847020. |
[32] |
S. Tang, G. Tang and W. Qin, Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014).
doi: 10.1142/S0218127414501223. |
[33] |
Y. Tang,
Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems, Discrete Contin. Dyn. Syst.-A, 38 (2018), 2029-2046.
doi: 10.3934/dcds.2018082. |
[34] |
F. Tao, B. Kang, B. Liu and L. Qu,
Threshold strategy for nonsmooth Filippov stage-structured pest growth models, Math. Probl. Eng., 1 (2019), 1-7.
doi: 10.1155/2019/9742197. |
[35] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational biology, Princeton University Press, Princeton, 2003.
doi: 10.2307/j.ctv301f9v.![]() ![]() |
show all references
References:
[1] |
V. Acary and B. Brogliato, Numerical Methods For Nonsmooth Dynamical Systems, Applications in Mechanics and Electronics, Springer-Verlag, New York, 2008. Google Scholar |
[2] |
A. Al-Khedhairi,
The chaos and control of food chain model using nonlinear feedback, Appl. Math. Sci., 3 (2009), 591-604.
|
[3] |
M. Banerjee, N. Mukherjee and V. Volpert,
Prey-Predator model with a nonlocal bistable dynamics of prey, Mathematics, 6 (2018), 1-13.
doi: 10.3390/math6030041. |
[4] |
S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: Bifurcations, Chaos, Control, and Applications, John Wiley and Sons, 2001. Google Scholar |
[5] |
S. P. Bera, A. Maiti and G. P. Samanta,
Dynamics of a food chain model with herd behaviour of the prey, Model. Earth Syst. Environ., 2 (2016), 131-140.
doi: 10.1007/s40808-016-0189-4. |
[6] |
B. Brogliato, Impact in Mechanical Systems - Analysis and Modelling, Lecture Notes in Physics, 551, Springer-Verlag, Berlin, 2000.
doi: 10.1007/3-540-45501-9. |
[7] |
B. Brogliato, Nonsmooth Mechanics - Models, Dynamics and Control, Communications and Control Engineering, Springer-Verlag, London, 1999.
doi: 10.1007/978-3-319-28664-8. |
[8] |
R. Casey, H. de Jong and J. L. Gouze,
Piecewise-linear models of genetic regulatory networks: Equilibria and their stability, J.Math.Biol., 52 (2006), 27-56.
doi: 10.1007/s00285-005-0338-2. |
[9] |
X. Chen and W. Zhang,
Normal forms of planar switching systems, Discrete Contin. Dyn. Syst.-A, 36 (2016), 6715-6736.
doi: 10.3934/dcds.2016092. |
[10] |
A. Colombo, N. D. Buono, L. Lopez and A. Pugliese,
Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems, Discrete Contin. Dyn. Syst.-B, 23 (2018), 2911-2934.
doi: 10.3934/dcdsb.2018166. |
[11] |
M. I. S. Costa and L. D. B. Faria,
Integrated pest management: theoretical insights from a threshold policy, Neotropical Entomology, 39 (2010), 1-8.
doi: 10.1590/S1519-566X2010000100001. |
[12] |
M. I. S. Costa and M. E. M. Meza,
Application of a threshold policy in the management of multispecies fisheries and predator culling, Math. Medicine and Bio.: A Journal of the IMA, 23 (2006), 63-75.
doi: 10.1093/imammb/dql005. |
[13] |
M. di Bernardo, C. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.
doi: 10.1007/978-1-84628-708-4. |
[14] |
M. di Bernardo, C. Budd, A. R. Champneys, P. Kowalczyk, A. B. Nordmark, G. Olivar and P. T. Piiroinen,
Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.
doi: 10.1137/050625060. |
[15] |
M. di Bernardo, P. Kowalczyk and A. Nordmark,
Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings, Physica D, 170 (2002), 175-205.
doi: 10.1016/S0167-2789(02)00547-X. |
[16] |
L. Dieci and F. Difonzo,
A comparison of Filippov sliding vector fields in codimension 2, J. Comput. Appl. Math., 262 (2014), 161-179.
doi: 10.1016/j.cam.2013.10.055. |
[17] |
A. F. Filippov,
Differential equations with discontinuous right-hand side, American Mathematical Society Translations, 2 (1964), 199-231.
|
[18] |
A. F. Filippov, Differential equations with discontinuous right-hand sides, Mathematics and Its Applications, Kluwer Academic, Dordrecht, Netherlands, 1988.
doi: 10.1007/978-94-015-7793-9. |
[19] |
H. I. Freedman and P. Waltman,
Mathematical analysis of some three species food-chain models, Math. Biosci., 33 (1977), 257-276.
doi: 10.1016/0025-5564(77)90142-0. |
[20] |
T. Gard,
Top predator persistence in differential equations models of food chains: The effects of omnivory and external forcing of lower trophic levels, J. Math. Biology, 14 (1982), 285-299.
doi: 10.1007/BF00275394. |
[21] |
K. Gupta and S. Gakkhar, The Filippov approach for predator-prey system involving mixed type of functional responses, Differential Eq. and Dynamical Syst., (2016), 1-21.
doi: 10.1007/s12591-016-0322-x. |
[22] |
A. Hastings and T. Powell,
Chaos in a three-species food chain, Ecology, 72 (1991), 896-903.
doi: 10.2307/1940591. |
[23] |
M. R. Jeffrey,
Dynamics at switching intersection: Hierarchy, isonomy and multiple-sliding, SIAM J. Appl. Dyn. Syst., 13 (2014), 1082-1105.
doi: 10.1137/13093368X. |
[24] |
Y. A. Kuznetsov, S. Rinaldi and A. Gragnani,
One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 2157-2188.
doi: 10.1142/S0218127403007874. |
[25] |
W. S. Madasanjaya, M. Mamat, Z. Salleh, I. Mohd and N. M. Mohamad,
Numerical simulation dynamical model of three species food chain with Holling type-Ⅱ functional response, Malays. J. Math. Sci., 5 (2011), 1-12.
|
[26] |
K. Popp and P. Stelter,
Stick-slip vibrations and chaos, Phil. Tran.: Phys. Scie. and Eng., 332 (1990), 89-105.
doi: 10.1098/rsta.1990.0102. |
[27] |
F. D. Rossa and F. Dercole,
The transition from persistence to nonsmooth-fold scenarios in relay control system, IFAC Proceedings Volumes, 44 (2011), 13287-13292.
doi: 10.3182/20110828-6-IT-1002.01354. |
[28] |
J. M. Schumacher,
Time-scaling symmetry and Zeno solutions, Automatica, 45 (2009), 1237-1242.
doi: 10.1016/j.automatica.2008.12.008. |
[29] |
Z. Shuwen and T. Dejun,
Permanence in a food chain system with impulsive perturbations, Chaos Solitons Fractals, 40 (2009), 392-400.
doi: 10.1016/j.chaos.2007.07.074. |
[30] |
Z. Shuwen and C. Lansun,
A Holling Ⅱ functional response food chain model with impulsive perturbations, Chaos, Solitons and Fractals, 24 (2005), 1269-1278.
doi: 10.1016/j.chaos.2004.09.051. |
[31] |
S. Tang, J. H. Liang, Y. N. Xiao and R. A. Cheke,
Sliding bifurcations of Filippov two stage pest control models with economic thresholds, SIAM J. Appl. Math., 72 (2012), 1061-1080.
doi: 10.1137/110847020. |
[32] |
S. Tang, G. Tang and W. Qin, Codimension-1 sliding bifurcations of a Filippov pest growth model with threshold policy, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014).
doi: 10.1142/S0218127414501223. |
[33] |
Y. Tang,
Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems, Discrete Contin. Dyn. Syst.-A, 38 (2018), 2029-2046.
doi: 10.3934/dcds.2018082. |
[34] |
F. Tao, B. Kang, B. Liu and L. Qu,
Threshold strategy for nonsmooth Filippov stage-structured pest growth models, Math. Probl. Eng., 1 (2019), 1-7.
doi: 10.1155/2019/9742197. |
[35] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational biology, Princeton University Press, Princeton, 2003.
doi: 10.2307/j.ctv301f9v.![]() ![]() |












[1] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[2] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[3] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[4] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[5] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[6] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[7] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[8] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[9] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[10] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[11] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[12] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[13] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[14] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[15] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[16] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[17] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[18] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[19] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[20] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]