doi: 10.3934/dcdsb.2019246

A nonlinear Stefan problem with variable exponent and different moving parameters

School of Mathematics, Southeast University, Nanjing 210096, China

* Corresponding author: Huiling Li

Received  April 2019 Revised  June 2019 Published  November 2019

Fund Project: The work is supported by NSFC Grants 11171064 and 11871148, and by the Natural Science Foundation of Jiangsu Province BK20161412

In this paper, we consider a nonlinear diffusion problem with variable exponent, accompanied by double free boundaries possessing different moving parameters, where the variable exponent function $ m(x) $ satisfies that $ m(x)-1 $ can change its sign. Local existence and uniqueness of solution are established firstly, and then, some sufficient conditions are achieved for finite time blowup, and as well for global existence. Asymptotic behavior is further investigated for global solution, and existences of fast solution and slow solution are presented by making use of upper-sub solutions, energy and scaling arguments.

Citation: Huiling Li, Xiaoliu Wang, Xueyan Lu. A nonlinear Stefan problem with variable exponent and different moving parameters. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2019246
References:
[1]

T. Aiki, Behavior of free boundaries of blow up solutions to one-phase Stefan problems, Nonlinear Anal., 26 (1996), 707-723.  doi: 10.1016/0362-546X(94)00311-5.  Google Scholar

[2]

T. Aiki and H. Imai, Blow-up points to one phase Stefan problems with Dirichlet boundary conditions, Modelling and Optimization of Distributed Parameter Systems, IFIP - The International Federation for Information Processing, Chapman & Hall, New York, 1996, 83–89. doi: 10.1007/978-0-387-34922-0_6.  Google Scholar

[3]

T. Aiki and H. Imai, Global existence of solutions to one-phase Stefan problems for semilinear parabolic equations(*), Ann. Mat. Pura Appl., 175 (1998), 327-337.  doi: 10.1007/BF01783691.  Google Scholar

[4]

T. AikiH. ImaiN. Ishimura and Y. Yamada, Well-posedness of one-phase Stefan problems for sublinear heat equations, Nonlinear Anal., 51 (2002), 587-606.  doi: 10.1016/S0362-546X(01)00845-8.  Google Scholar

[5]

X. L. Bai and S. N. Zheng, A semilinear parabolic system with coupling variable exponents, Ann. Mat. Pura Appl., 190 (2011), 525-537.  doi: 10.1007/s10231-010-0161-2.  Google Scholar

[6]

A. Bensoussan and J. L. Lions, Problémes de temps d'arr${\hat e}$t optimal et inéquations variationelles paraboliques, Applicable Anal., 3 (1973), 267-294.  doi: 10.1080/00036817308839070.  Google Scholar

[7]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisted: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[8]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[9]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[10]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[11]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[13]

Y. H. DuH. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[14]

X. L. Fan and D. Zhao, On the spaces $L^p(x)(\Omega)$ and $W^{k, \, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. I., J. Math. Anal. Appl., 57 (1977), 694–723; II. 58 (1977), 202–231; III. 59 (1977), l–14. doi: 10.1016/0022-247X(77)90256-6.  Google Scholar

[16]

R. FerreiraA. de PabloM. Pérez-LLanos and J. D. Rossi, Critical exponents for a semilinear parabolic equation with variable reaction, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1027-1042.  doi: 10.1017/S0308210510000399.  Google Scholar

[17]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem, Interfaces Free Bound., 3 (2001), 337-344.  doi: 10.4171/IFB/43.  Google Scholar

[18]

A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.  Google Scholar

[19]

H. GhidoucheP. Souplet and D. Tarzia, Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary, Proc. Amer. Math. Soc., 129 (2001), 781-792.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[20]

H. GuB. D. Lou and M. L. Zhou, Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[21]

H. M. Huang and M. X. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2039-2050.  doi: 10.3934/dcdsb.2015.20.2039.  Google Scholar

[22]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330.  doi: 10.1002/cpa.3160160307.  Google Scholar

[23]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[24]

H. A. Levine, Some noexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[25]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[26]

B. C. Liu and F. J. Li, Non-simultaneous blowup in heat equations with nonstandard growth conditions, J. Differential Equations, 252 (2012), 4481-4502.  doi: 10.1016/j.jde.2012.01.001.  Google Scholar

[27]

S. Y. LiuH. M. Huang and M. X. Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differential Equations, 266 (2019), 4769-4799.  doi: 10.1016/j.jde.2018.10.009.  Google Scholar

[28]

E. Magenes, Topics in parabolic equations: Some typical free boundary problems, in Boundary value problems for linear evolution partial differential equations, NATO Advanced Study Institutes Series, 29 (1977), 239–312. doi: 10.1007/978-94-010-1205-8_5.  Google Scholar

[29]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.  Google Scholar

[30]

J. P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal., 71 (2009), 1094-1099.  doi: 10.1016/j.na.2008.11.030.  Google Scholar

[31]

R. Ricci and D. A. Tarzia, Asymptotic behavior of the solutions of the dead-core problem, Nonlinear Anal., 13 (1989), 405-411.  doi: 10.1016/0362-546X(89)90047-3.  Google Scholar

[32]

L. I. Rubinstein, The Stefan problem, translated from the Russian by A. D. Solomon, in Translations of Mathematical Monographs, 27, American Mathematical Society, Providence, R.I., 1971.  Google Scholar

[33]

P. Souplet, Stability and continuous dependence of solutions to one-phase Stefan problems for semilinear parabolic equations, Port. Math. (N. S.), 59 (2002), 315-323.   Google Scholar

[34]

J. P. Wang and M. X. Wang, The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary, Math. Methods Appl. Sci., 41 (2018), 6741-6762.  doi: 10.1002/mma.5189.  Google Scholar

[35]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[36]

M. X. Wang, Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415-421.  doi: 10.3934/dcdsb.2018179.  Google Scholar

[37]

M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Contin. Dyn. Syst., 38 (2018), 2591-2607.  doi: 10.3934/dcds.2018109.  Google Scholar

[38]

M. X. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with two free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[39]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.  doi: 10.1016/j.na.2017.01.005.  Google Scholar

[40]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[41]

M. X. Wang and J. F. Zhao, A free boundary problem for a prey-predator model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.  Google Scholar

[42]

M. X. Wang and Y. G. Zhao, A semilinear parabolic system with a free boundary, Z. Angew. Math. Phys., 66 (2015), 3309-3332.  doi: 10.1007/s00033-015-0582-2.  Google Scholar

[43]

Y. Zhang and M. X. Wang, A free boundary problem of the ratio-dependent prey-predator model, Appl. Anal., 94 (2015), 2147-2167.  doi: 10.1080/00036811.2014.979806.  Google Scholar

[44]

Y. G. Zhao and M. X. Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.  doi: 10.1093/imamat/hxv035.  Google Scholar

[45]

P. ZhouJ. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary, Nonlinear Anal., 74 (2011), 2523-2533.  doi: 10.1016/j.na.2010.11.047.  Google Scholar

[46]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.  doi: 10.1016/j.jde.2013.12.008.  Google Scholar

show all references

References:
[1]

T. Aiki, Behavior of free boundaries of blow up solutions to one-phase Stefan problems, Nonlinear Anal., 26 (1996), 707-723.  doi: 10.1016/0362-546X(94)00311-5.  Google Scholar

[2]

T. Aiki and H. Imai, Blow-up points to one phase Stefan problems with Dirichlet boundary conditions, Modelling and Optimization of Distributed Parameter Systems, IFIP - The International Federation for Information Processing, Chapman & Hall, New York, 1996, 83–89. doi: 10.1007/978-0-387-34922-0_6.  Google Scholar

[3]

T. Aiki and H. Imai, Global existence of solutions to one-phase Stefan problems for semilinear parabolic equations(*), Ann. Mat. Pura Appl., 175 (1998), 327-337.  doi: 10.1007/BF01783691.  Google Scholar

[4]

T. AikiH. ImaiN. Ishimura and Y. Yamada, Well-posedness of one-phase Stefan problems for sublinear heat equations, Nonlinear Anal., 51 (2002), 587-606.  doi: 10.1016/S0362-546X(01)00845-8.  Google Scholar

[5]

X. L. Bai and S. N. Zheng, A semilinear parabolic system with coupling variable exponents, Ann. Mat. Pura Appl., 190 (2011), 525-537.  doi: 10.1007/s10231-010-0161-2.  Google Scholar

[6]

A. Bensoussan and J. L. Lions, Problémes de temps d'arr${\hat e}$t optimal et inéquations variationelles paraboliques, Applicable Anal., 3 (1973), 267-294.  doi: 10.1080/00036817308839070.  Google Scholar

[7]

G. BuntingY. H. Du and K. Krakowski, Spreading speed revisted: Analysis of a free boundary model, Netw. Heterog. Media, 7 (2012), 583-603.  doi: 10.3934/nhm.2012.7.583.  Google Scholar

[8]

J. F. CaoW. T. Li and M. Zhao, A nonlocal diffusion model with free boundaries in spatial heterogeneous environment, J. Math. Anal. Appl., 449 (2017), 1015-1035.  doi: 10.1016/j.jmaa.2016.12.044.  Google Scholar

[9]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[10]

Y. H. DuZ. M. Guo and R. Peng, A diffusive logistic model with a free boundary in time-periodic environment, J. Funct. Anal., 265 (2013), 2089-2142.  doi: 10.1016/j.jfa.2013.07.016.  Google Scholar

[11]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[12]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[13]

Y. H. DuH. Matsuzawa and M. L. Zhou, Sharp estimate of the spreading speed determined by nonlinear free boundary problems, SIAM J. Math. Anal., 46 (2014), 375-396.  doi: 10.1137/130908063.  Google Scholar

[14]

X. L. Fan and D. Zhao, On the spaces $L^p(x)(\Omega)$ and $W^{k, \, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[15]

A. Fasano and M. Primicerio, General free-boundary problems for the heat equation. I., J. Math. Anal. Appl., 57 (1977), 694–723; II. 58 (1977), 202–231; III. 59 (1977), l–14. doi: 10.1016/0022-247X(77)90256-6.  Google Scholar

[16]

R. FerreiraA. de PabloM. Pérez-LLanos and J. D. Rossi, Critical exponents for a semilinear parabolic equation with variable reaction, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1027-1042.  doi: 10.1017/S0308210510000399.  Google Scholar

[17]

M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem, Interfaces Free Bound., 3 (2001), 337-344.  doi: 10.4171/IFB/43.  Google Scholar

[18]

A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.  Google Scholar

[19]

H. GhidoucheP. Souplet and D. Tarzia, Decay of global solutions, stability and blowup for a reaction-diffusion problem with free boundary, Proc. Amer. Math. Soc., 129 (2001), 781-792.  doi: 10.1090/S0002-9939-00-05705-1.  Google Scholar

[20]

H. GuB. D. Lou and M. L. Zhou, Long time behavior for solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714-1768.  doi: 10.1016/j.jfa.2015.07.002.  Google Scholar

[21]

H. M. Huang and M. X. Wang, The reaction-diffusion system for an SIR epidemic model with a free boundary, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2039-2050.  doi: 10.3934/dcdsb.2015.20.2039.  Google Scholar

[22]

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math., 16 (1963), 305-330.  doi: 10.1002/cpa.3160160307.  Google Scholar

[23]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[24]

H. A. Levine, Some noexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au+F(u)$, Arch. Rational Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[25]

Z. G. Lin, A free boundary problem for a predator-prey model, Nonlinearity, 20 (2007), 1883-1892.  doi: 10.1088/0951-7715/20/8/004.  Google Scholar

[26]

B. C. Liu and F. J. Li, Non-simultaneous blowup in heat equations with nonstandard growth conditions, J. Differential Equations, 252 (2012), 4481-4502.  doi: 10.1016/j.jde.2012.01.001.  Google Scholar

[27]

S. Y. LiuH. M. Huang and M. X. Wang, Asymptotic spreading of a diffusive competition model with different free boundaries, J. Differential Equations, 266 (2019), 4769-4799.  doi: 10.1016/j.jde.2018.10.009.  Google Scholar

[28]

E. Magenes, Topics in parabolic equations: Some typical free boundary problems, in Boundary value problems for linear evolution partial differential equations, NATO Advanced Study Institutes Series, 29 (1977), 239–312. doi: 10.1007/978-94-010-1205-8_5.  Google Scholar

[29]

R. Peng and X. Q. Zhao, The diffusive logistic model with a free boundary and seasonal succession, Discrete Contin. Dyn. Syst., 33 (2013), 2007-2031.  doi: 10.3934/dcds.2013.33.2007.  Google Scholar

[30]

J. P. Pinasco, Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal., 71 (2009), 1094-1099.  doi: 10.1016/j.na.2008.11.030.  Google Scholar

[31]

R. Ricci and D. A. Tarzia, Asymptotic behavior of the solutions of the dead-core problem, Nonlinear Anal., 13 (1989), 405-411.  doi: 10.1016/0362-546X(89)90047-3.  Google Scholar

[32]

L. I. Rubinstein, The Stefan problem, translated from the Russian by A. D. Solomon, in Translations of Mathematical Monographs, 27, American Mathematical Society, Providence, R.I., 1971.  Google Scholar

[33]

P. Souplet, Stability and continuous dependence of solutions to one-phase Stefan problems for semilinear parabolic equations, Port. Math. (N. S.), 59 (2002), 315-323.   Google Scholar

[34]

J. P. Wang and M. X. Wang, The diffusive Beddington-DeAngelis predator-prey model with nonlinear prey-taxis and free boundary, Math. Methods Appl. Sci., 41 (2018), 6741-6762.  doi: 10.1002/mma.5189.  Google Scholar

[35]

M. X. Wang, A diffusive logistic equation with a free boundary and sign-changing coefficient in time-periodic environment, J. Funct. Anal., 270 (2016), 483-508.  doi: 10.1016/j.jfa.2015.10.014.  Google Scholar

[36]

M. X. Wang, Existence and uniqueness of solutions of free boundary problems in heterogeneous environments, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 415-421.  doi: 10.3934/dcdsb.2018179.  Google Scholar

[37]

M. X. Wang and Q. Y. Zhang, Dynamics for the diffusive Leslie-Gower model with double free boundaries, Discrete Contin. Dyn. Syst., 38 (2018), 2591-2607.  doi: 10.3934/dcds.2018109.  Google Scholar

[38]

M. X. Wang and Y. Zhang, Dynamics for a diffusive prey-predator model with two free boundaries, J. Differential Equations, 264 (2018), 3527-3558.  doi: 10.1016/j.jde.2017.11.027.  Google Scholar

[39]

M. X. Wang and Y. Zhang, Note on a two-species competition-diffusion model with two free boundaries, Nonlinear Anal., 159 (2017), 458-467.  doi: 10.1016/j.na.2017.01.005.  Google Scholar

[40]

M. X. Wang and Y. Zhang, Two kinds of free boundary problems for the diffusive prey-predator model, Nonlinear Anal. Real World Appl., 24 (2015), 73-82.  doi: 10.1016/j.nonrwa.2015.01.004.  Google Scholar

[41]

M. X. Wang and J. F. Zhao, A free boundary problem for a prey-predator model with double free boundaries, J. Dynam. Differential Equations, 29 (2017), 957-979.  doi: 10.1007/s10884-015-9503-5.  Google Scholar

[42]

M. X. Wang and Y. G. Zhao, A semilinear parabolic system with a free boundary, Z. Angew. Math. Phys., 66 (2015), 3309-3332.  doi: 10.1007/s00033-015-0582-2.  Google Scholar

[43]

Y. Zhang and M. X. Wang, A free boundary problem of the ratio-dependent prey-predator model, Appl. Anal., 94 (2015), 2147-2167.  doi: 10.1080/00036811.2014.979806.  Google Scholar

[44]

Y. G. Zhao and M. X. Wang, Free boundary problems for the diffusive competition system in higher dimension with sign-changing coefficients, IMA J. Appl. Math., 81 (2016), 255-280.  doi: 10.1093/imamat/hxv035.  Google Scholar

[45]

P. ZhouJ. Bao and Z. G. Lin, Global existence and blowup of a localized problem with free boundary, Nonlinear Anal., 74 (2011), 2523-2533.  doi: 10.1016/j.na.2010.11.047.  Google Scholar

[46]

P. Zhou and D. M. Xiao, The diffusive logistic model with a free boundary in heterogeneous environment, J. Differential Equations, 256 (2014), 1927-1954.  doi: 10.1016/j.jde.2013.12.008.  Google Scholar

[1]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[2]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[3]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[4]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[5]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[6]

Qunying Zhang, Zhigui Lin. Blowup, global fast and slow solutions to a parabolic system with double fronts free boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 429-444. doi: 10.3934/dcdsb.2012.17.429

[7]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[8]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[9]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[10]

Tewfik Sari, Frederic Mazenc. Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences & Engineering, 2011, 8 (3) : 827-840. doi: 10.3934/mbe.2011.8.827

[11]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[12]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[13]

Hiroshi Matsuzawa. A free boundary problem for the Fisher-KPP equation with a given moving boundary. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1821-1852. doi: 10.3934/cpaa.2018087

[14]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[15]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[16]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[17]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[18]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[19]

Yuan Wu, Jin Liang, Bei Hu. A free boundary problem for defaultable corporate bond with credit rating migration risk and its asymptotic behavior. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1043-1058. doi: 10.3934/dcdsb.2019207

[20]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (30)
  • Cited by (0)

Other articles
by authors

[Back to Top]