
-
Previous Article
The effect of noise intensity on parabolic equations
- DCDS-B Home
- This Issue
-
Next Article
A nonlinear Stefan problem with variable exponent and different moving parameters
Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays
School of Mathematics, Renmin University of China, Beijing 100872, China |
In this work a stochastic Holling-Ⅱ type predator-prey model with infinite delays and feedback controls is investigated. By constructing a Lyapunov function, together with stochastic analysis approach, we obtain that the stochastic controlled predator-prey model admits a unique global positive solution. We then utilize graphical method and stability theorem of stochastic differential equations to investigate the globally asymptotical stability of a unique positive equilibrium for the stochastic controlled predator-prey system. If the stochastic predator-prey system is globally stable, then we show that using suitable feedback controls can alter the position of the unique positive equilibrium and retain the stable property. If the predator-prey system is destabilized by large intensities of white noises, then by choosing the appropriate values of feedback control variables, we can make the system reach a new stable state. Some examples are presented to verify our main results.
References:
[1] |
M. Aizerman and F. Gantmacher, Absolute Stability of Regulator Systems, Holden Day, San Francisco, 1964. |
[2] |
L. Arnold, W. Horsthemke and J. Stucki,
The influence of external real and white noise on the Lotka-Volterra model, Biomedical J., 21 (1979), 451-471.
doi: 10.1002/bimj.4710210507. |
[3] |
L. Chang, G. Sun, Z. Wang and Z. Jin,
Rich dynamics in a spatial predator-prey model with delay, Appl. Math. Comput., 256 (2015), 540-550.
doi: 10.1016/j.amc.2015.01.052. |
[4] |
F. Chen,
Global stability of a single species model with feedback control and distributed time delay, Appl. Math. Comput., 178 (2006), 474-479.
doi: 10.1016/j.amc.2005.11.062. |
[5] |
L. Chen and F. Chen,
Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330-1334.
doi: 10.1016/j.aml.2009.03.005. |
[6] |
L. Chen, F. Chen and L. Chen,
Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 246-252.
doi: 10.1016/j.nonrwa.2008.10.056. |
[7] |
L. Chen and J. Chen, Nonlinear Biodynamics Systems, Science Press of China, Beijing, 1993. |
[8] |
P. Chesson and R. Warner,
Environmental variability promotes coexistence in lottery competitive systems, Amer. Natur., 117 (1981), 923-943.
doi: 10.1086/283778. |
[9] |
Y. Fan and L. Wang,
Global asymptotical stability of a Logistic model with feedback control, Nonlinear Anal. Real World Appl., 11 (2010), 2686-2697.
doi: 10.1016/j.nonrwa.2009.09.016. |
[10] |
T. Faria,
Stability and extinction for Lotka-Volterra systems with infinite delay, J. Dynam. Differential Equations, 22 (2010), 299-324.
doi: 10.1007/s10884-010-9166-1. |
[11] |
S. Gakkhar and A. Singh,
Complex dynamics in a prey-predator system with multiple delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2011), 914-929.
doi: 10.1016/j.cnsns.2011.05.047. |
[12] |
T. C. Gard,
Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.
doi: 10.1007/BF02462011. |
[13] |
T. C. Gard,
Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.
doi: 10.1016/0362-546X(86)90111-2. |
[14] |
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications, 74, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[15] |
K. Gopalsamy and P. Weng,
Feedback regulation of logistic growth, Internat. J. Math. Math. Sci., 16 (1993), 177-192.
doi: 10.1155/S0161171293000213. |
[16] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[17] |
C. S. Holling,
Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[18] |
C. S. Holling,
The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.
doi: 10.4039/entm9745fv. |
[19] |
C. Ji, D. Jiang and N. Shi,
Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.
doi: 10.1016/j.jmaa.2009.05.039. |
[20] |
T. K. Kara and A. Batabyal,
Stability and bifurcation of a prey-predator model with time delay, Comptes Rendus Biologies, 332 (2009), 642-651.
doi: 10.1016/j.crvi.2009.02.002. |
[21] |
W. Krajewski and U. Viaro,
Locating the equilibrium points of a predator-prey model by means of affine state feedback, J. Franklin. Inst., 345 (2008), 489-498.
doi: 10.1016/j.jfranklin.2008.02.001. |
[22] |
S. Lefschetz, Stability of Nonlinear Control Systems, Mathematics in Science and Engineering, 13, Academic Press, New York, 1965.
doi: 10.1002/zamm.19660460515.![]() ![]() ![]() |
[23] |
A. Levin,
Dispersion and population interactions, Amer. Natur., 108 (1974), 207-228.
doi: 10.1086/282900. |
[24] |
S. Li, J. Wu and Y. Dong,
Effects of a degeneracy in a diffusive predator-prey model with Holling II functional response, Nonlinear Anal. Real World Appl., 43 (2018), 78-95.
doi: 10.1016/j.nonrwa.2018.02.003. |
[25] |
Z. Li, M. Han and F. Chen,
Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays, Nonlinear Anal. Real World Appl., 14 (2013), 402-413.
doi: 10.1016/j.nonrwa.2012.07.004. |
[26] |
M. Liu and K. Wang,
Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3115-3123.
doi: 10.1016/j.cnsns.2011.09.021. |
[27] |
M. Liu and K. Wang,
Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1114-1121.
doi: 10.1016/j.cnsns.2010.06.015. |
[28] |
Q. Liu, Y. Liu and X. Pan,
Global stability of a stochastic predator-prey system with infinite delays, Appl. Math. Comput., 235 (2014), 1-7.
doi: 10.1016/j.amc.2014.02.091. |
[29] |
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chichester, 1997. |
[30] |
X. Mao,
Stochastic stabilisation and destabilisation, Syst. Control Lett., 23 (1994), 279-290.
doi: 10.1016/0167-6911(94)90050-7. |
[31] |
X. Mao, S. Sabais and E. Renshaw,
Asymptotic behavior of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
doi: 10.1016/S0022-247X(03)00539-0. |
[32] |
R. M. May,
Time-delay versus stability in population models with two and three trophic levels, Ecology, 54 (1973), 315-325.
doi: 10.2307/1934339. |
[33] |
E. A. McGehee and E. Peacock-López,
Turing patterns in a modified Lotka-Volterra model, Phys. Lett. A, 342 (2005), 90-98.
doi: 10.1016/j.physleta.2005.04.098. |
[34] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, Am. Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[35] |
Y. Saito,
The necessary and sufficient condition for global stability of a Lotka-Volterra cooperative or competition system with delays, J. Math. Anal. Appl., 268 (2002), 109-124.
doi: 10.1006/jmaa.2001.7801. |
[36] |
Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Sato,
Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.
doi: 10.1016/j.jmaa.2005.11.009. |
[37] |
Q. Wang, Z. Ji, Z. Wang, M. Ding and H. Zhang,
Existence and attractivity of a periodic solution for a ratio-dependent Leslie system with feedback controls, Nonlinear Anal. Real World Appl., 12 (2011), 24-33.
doi: 10.1016/j.nonrwa.2010.05.032. |
[38] |
K. Yang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, Academic Press, Boston, 1993.
![]() ![]() |
[39] |
K. Yang,
Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations, 103 (1993), 221-246.
doi: 10.1006/jdeq.1993.1048. |
[40] |
K. Yang, Z. Miao, F. Chen and X. Xie,
Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls, J. Math. Anal. Appl., 435 (2016), 874-888.
|
[41] |
R. Yang, M. Liu and C. Zhang,
A delayed-diffusive predator-prey model with a ratio-dependent functional response, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 94-110.
doi: 10.1016/j.cnsns.2017.04.034. |
[42] |
F. Yin and Y. Li,
Positive periodic solutions of a single species model with feedback regulation and distributed time delay, Appl. Math. Comput., 153 (2004), 475-484.
doi: 10.1016/S0096-3003(03)00648-9. |
[43] |
Q. Zhang, X. Wen, D. Jiang and Z. Liu, The stability of a predator-prey system with linear mass-action functional response perturbed by white noise, Adv. Differ. Equ., (2016).
doi: 10.1186/s13662-016-0776-8. |
show all references
References:
[1] |
M. Aizerman and F. Gantmacher, Absolute Stability of Regulator Systems, Holden Day, San Francisco, 1964. |
[2] |
L. Arnold, W. Horsthemke and J. Stucki,
The influence of external real and white noise on the Lotka-Volterra model, Biomedical J., 21 (1979), 451-471.
doi: 10.1002/bimj.4710210507. |
[3] |
L. Chang, G. Sun, Z. Wang and Z. Jin,
Rich dynamics in a spatial predator-prey model with delay, Appl. Math. Comput., 256 (2015), 540-550.
doi: 10.1016/j.amc.2015.01.052. |
[4] |
F. Chen,
Global stability of a single species model with feedback control and distributed time delay, Appl. Math. Comput., 178 (2006), 474-479.
doi: 10.1016/j.amc.2005.11.062. |
[5] |
L. Chen and F. Chen,
Global stability of a Leslie-Gower predator-prey model with feedback controls, Appl. Math. Lett., 22 (2009), 1330-1334.
doi: 10.1016/j.aml.2009.03.005. |
[6] |
L. Chen, F. Chen and L. Chen,
Qualitative analysis of a predator-prey model with Holling type Ⅱ functional response incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11 (2010), 246-252.
doi: 10.1016/j.nonrwa.2008.10.056. |
[7] |
L. Chen and J. Chen, Nonlinear Biodynamics Systems, Science Press of China, Beijing, 1993. |
[8] |
P. Chesson and R. Warner,
Environmental variability promotes coexistence in lottery competitive systems, Amer. Natur., 117 (1981), 923-943.
doi: 10.1086/283778. |
[9] |
Y. Fan and L. Wang,
Global asymptotical stability of a Logistic model with feedback control, Nonlinear Anal. Real World Appl., 11 (2010), 2686-2697.
doi: 10.1016/j.nonrwa.2009.09.016. |
[10] |
T. Faria,
Stability and extinction for Lotka-Volterra systems with infinite delay, J. Dynam. Differential Equations, 22 (2010), 299-324.
doi: 10.1007/s10884-010-9166-1. |
[11] |
S. Gakkhar and A. Singh,
Complex dynamics in a prey-predator system with multiple delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2011), 914-929.
doi: 10.1016/j.cnsns.2011.05.047. |
[12] |
T. C. Gard,
Persistence in stochastic food web models, Bull. Math. Biol., 46 (1984), 357-370.
doi: 10.1007/BF02462011. |
[13] |
T. C. Gard,
Stability for multispecies population models in random environments, Nonlinear Anal., 10 (1986), 1411-1419.
doi: 10.1016/0362-546X(86)90111-2. |
[14] |
K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications, 74, Kluwer Academic, Dordrecht, 1992.
doi: 10.1007/978-94-015-7920-9. |
[15] |
K. Gopalsamy and P. Weng,
Feedback regulation of logistic growth, Internat. J. Math. Math. Sci., 16 (1993), 177-192.
doi: 10.1155/S0161171293000213. |
[16] |
D. J. Higham,
An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546.
doi: 10.1137/S0036144500378302. |
[17] |
C. S. Holling,
Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[18] |
C. S. Holling,
The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation, Memoirs of the Entomological Society of Canada, 97 (1965), 5-60.
doi: 10.4039/entm9745fv. |
[19] |
C. Ji, D. Jiang and N. Shi,
Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498.
doi: 10.1016/j.jmaa.2009.05.039. |
[20] |
T. K. Kara and A. Batabyal,
Stability and bifurcation of a prey-predator model with time delay, Comptes Rendus Biologies, 332 (2009), 642-651.
doi: 10.1016/j.crvi.2009.02.002. |
[21] |
W. Krajewski and U. Viaro,
Locating the equilibrium points of a predator-prey model by means of affine state feedback, J. Franklin. Inst., 345 (2008), 489-498.
doi: 10.1016/j.jfranklin.2008.02.001. |
[22] |
S. Lefschetz, Stability of Nonlinear Control Systems, Mathematics in Science and Engineering, 13, Academic Press, New York, 1965.
doi: 10.1002/zamm.19660460515.![]() ![]() ![]() |
[23] |
A. Levin,
Dispersion and population interactions, Amer. Natur., 108 (1974), 207-228.
doi: 10.1086/282900. |
[24] |
S. Li, J. Wu and Y. Dong,
Effects of a degeneracy in a diffusive predator-prey model with Holling II functional response, Nonlinear Anal. Real World Appl., 43 (2018), 78-95.
doi: 10.1016/j.nonrwa.2018.02.003. |
[25] |
Z. Li, M. Han and F. Chen,
Influence of feedback controls on an autonomous Lotka-Volterra competitive system with infinite delays, Nonlinear Anal. Real World Appl., 14 (2013), 402-413.
doi: 10.1016/j.nonrwa.2012.07.004. |
[26] |
M. Liu and K. Wang,
Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3115-3123.
doi: 10.1016/j.cnsns.2011.09.021. |
[27] |
M. Liu and K. Wang,
Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response, Commun Nonlinear Sci Numer Simulat, 16 (2011), 1114-1121.
doi: 10.1016/j.cnsns.2010.06.015. |
[28] |
Q. Liu, Y. Liu and X. Pan,
Global stability of a stochastic predator-prey system with infinite delays, Appl. Math. Comput., 235 (2014), 1-7.
doi: 10.1016/j.amc.2014.02.091. |
[29] |
X. Mao, Stochastic Differential Equations and Their Applications, Horwood Publishing, Chichester, 1997. |
[30] |
X. Mao,
Stochastic stabilisation and destabilisation, Syst. Control Lett., 23 (1994), 279-290.
doi: 10.1016/0167-6911(94)90050-7. |
[31] |
X. Mao, S. Sabais and E. Renshaw,
Asymptotic behavior of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156.
doi: 10.1016/S0022-247X(03)00539-0. |
[32] |
R. M. May,
Time-delay versus stability in population models with two and three trophic levels, Ecology, 54 (1973), 315-325.
doi: 10.2307/1934339. |
[33] |
E. A. McGehee and E. Peacock-López,
Turing patterns in a modified Lotka-Volterra model, Phys. Lett. A, 342 (2005), 90-98.
doi: 10.1016/j.physleta.2005.04.098. |
[34] |
M. L. Rosenzweig and R. H. MacArthur,
Graphical representation and stability conditions of predator-prey interactions, Am. Naturalist, 97 (1963), 209-223.
doi: 10.1086/282272. |
[35] |
Y. Saito,
The necessary and sufficient condition for global stability of a Lotka-Volterra cooperative or competition system with delays, J. Math. Anal. Appl., 268 (2002), 109-124.
doi: 10.1006/jmaa.2001.7801. |
[36] |
Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Sato,
Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957.
doi: 10.1016/j.jmaa.2005.11.009. |
[37] |
Q. Wang, Z. Ji, Z. Wang, M. Ding and H. Zhang,
Existence and attractivity of a periodic solution for a ratio-dependent Leslie system with feedback controls, Nonlinear Anal. Real World Appl., 12 (2011), 24-33.
doi: 10.1016/j.nonrwa.2010.05.032. |
[38] |
K. Yang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, Academic Press, Boston, 1993.
![]() ![]() |
[39] |
K. Yang,
Global stability for infinite delay Lotka-Volterra type systems, J. Differential Equations, 103 (1993), 221-246.
doi: 10.1006/jdeq.1993.1048. |
[40] |
K. Yang, Z. Miao, F. Chen and X. Xie,
Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls, J. Math. Anal. Appl., 435 (2016), 874-888.
|
[41] |
R. Yang, M. Liu and C. Zhang,
A delayed-diffusive predator-prey model with a ratio-dependent functional response, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 94-110.
doi: 10.1016/j.cnsns.2017.04.034. |
[42] |
F. Yin and Y. Li,
Positive periodic solutions of a single species model with feedback regulation and distributed time delay, Appl. Math. Comput., 153 (2004), 475-484.
doi: 10.1016/S0096-3003(03)00648-9. |
[43] |
Q. Zhang, X. Wen, D. Jiang and Z. Liu, The stability of a predator-prey system with linear mass-action functional response perturbed by white noise, Adv. Differ. Equ., (2016).
doi: 10.1186/s13662-016-0776-8. |








[1] |
Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 |
[2] |
Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 |
[3] |
Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 |
[4] |
Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259 |
[5] |
Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 |
[6] |
Dan Li. Global stability in a multi-dimensional predator-prey system with prey-taxis. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1681-1705. doi: 10.3934/dcds.2020337 |
[7] |
Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure and Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005 |
[8] |
S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 |
[9] |
Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273 |
[10] |
Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 |
[11] |
Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 |
[12] |
Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002 |
[13] |
Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719 |
[14] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[15] |
Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321 |
[16] |
Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 |
[17] |
Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 |
[18] |
Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 |
[19] |
Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 |
[20] |
Lizhi Fei, Xingwu Chen. Bifurcation and control of a predator-prey system with unfixed functional responses. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021292 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]