# American Institute of Mathematical Sciences

May  2020, 25(5): 1699-1714. doi: 10.3934/dcdsb.2019247

## Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays

 School of Mathematics, Renmin University of China, Beijing 100872, China

* Corresponding author: Kexin Wang

Received  April 2019 Revised  July 2019 Published  November 2019

Fund Project: The first author is supported by NSFC grant No. 71531012.

In this work a stochastic Holling-Ⅱ type predator-prey model with infinite delays and feedback controls is investigated. By constructing a Lyapunov function, together with stochastic analysis approach, we obtain that the stochastic controlled predator-prey model admits a unique global positive solution. We then utilize graphical method and stability theorem of stochastic differential equations to investigate the globally asymptotical stability of a unique positive equilibrium for the stochastic controlled predator-prey system. If the stochastic predator-prey system is globally stable, then we show that using suitable feedback controls can alter the position of the unique positive equilibrium and retain the stable property. If the predator-prey system is destabilized by large intensities of white noises, then by choosing the appropriate values of feedback control variables, we can make the system reach a new stable state. Some examples are presented to verify our main results.

Citation: Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247
##### References:

show all references

##### References:
The parabola $l_1$ (green line) and the hyperbola $l_2$(blue line) of 9 provided that the condition 7 holds
The region $R_0$ where positive equilibria $(x^{*}, y^{*})$ will occur under feedback controls
Dynamic behavior of the solution $(x(t), y(t))^{T}$ of system 20 with the initial condition $(\varphi_1(\theta), \varphi_2(\theta)) = (1.2 e^{\theta}, 0.8 e^{\theta}), \theta \in (-\infty, 0]$
The region $R_0$ where positive equilibria of system 20 will occur under feedback controls
Dynamic behavior of the solution $(x(t), y(t))^{T}$ of system 20 with small perturbations $\sigma_1 = \sigma_2 = 0.1$ and the initial condition $(\varphi_1(\theta), \varphi_2(\theta)) = (1.2 e^{\theta}, 0.8 e^{\theta}), \theta \in (-\infty, 0]$
Dynamic behavior of the solution $(x(t), y(t), u_1(t), u_2(t))^{T}$ of system 21 with the initial condition $(\varphi_1(\theta), \varphi_2(\theta), u_1(0), u_2(0)) = (1.2 e^{\theta}, 0.8 e^{\theta}, 1,1), \theta \in (-\infty, 0]$
Dynamic behavior of the solution $(x(t), y(t))^{T}$ of system 20 with big perturbations $\sigma_1 = \sigma_2 = 1$ and the initial condition $(\varphi_1(\theta), \varphi_2(\theta)) = (1.2 e^{\theta}, 0.8 e^{\theta}), \theta \in (-\infty, 0]$
Dynamic behavior of the solution $(x(t), y(t), u_1(t), u_2(t))^{T}$ of system 22 with the initial condition $(\varphi_1(\theta), \varphi_2(\theta), u_1(0), u_2(0)) = (1.2 e^{\theta}, 0.8 e^{\theta}, 1,1), \theta \in (-\infty, 0]$
 [1] Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 [2] Zhong Li, Maoan Han, Fengde Chen. Global stability of a predator-prey system with stage structure and mutual interference. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 173-187. doi: 10.3934/dcdsb.2014.19.173 [3] Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 [4] Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020259 [5] Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 [6] Guanqi Liu, Yuwen Wang. Stochastic spatiotemporal diffusive predator-prey systems. Communications on Pure & Applied Analysis, 2018, 17 (1) : 67-84. doi: 10.3934/cpaa.2018005 [7] S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 [8] Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273 [9] Hongxiao Hu, Liguang Xu, Kai Wang. A comparison of deterministic and stochastic predator-prey models with disease in the predator. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2837-2863. doi: 10.3934/dcdsb.2018289 [10] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [11] Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002 [12] Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719 [13] Marcos Lizana, Julio Marín. On the dynamics of a ratio dependent Predator-Prey system with diffusion and delay. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1321-1338. doi: 10.3934/dcdsb.2006.6.1321 [14] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 [15] Nguyen Huu Du, Nguyen Thanh Dieu, Tran Dinh Tuong. Dynamic behavior of a stochastic predator-prey system under regime switching. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3483-3498. doi: 10.3934/dcdsb.2017176 [16] Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 [17] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167 [18] Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 [19] Leonid Braverman, Elena Braverman. Stability analysis and bifurcations in a diffusive predator-prey system. Conference Publications, 2009, 2009 (Special) : 92-100. doi: 10.3934/proc.2009.2009.92 [20] Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701

2018 Impact Factor: 1.008

## Tools

Article outline

Figures and Tables