\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A gradient-type algorithm for constrained optimization with application to microstructure optimization

Supported by National Funding from FCT - Fundação para a Ciência e a Tecnologia, under the project UID/MAT/04561/2019

Abstract / Introduction Full Text(HTML) Figure(8) Related Papers Cited by
  • We propose a method to optimize periodic microstructures for obtaining homogenized materials with negative Poisson ratio, using shape and/or topology variations in the model hole. The proposed approach employs worst case design in order to minimize the Poisson ratio of the (possibly anisotropic) homogenized elastic tensor in several prescribed directions. We use a minimization algorithm for inequality constraints based on an active set strategy and on a new algorithm for solving minimization problems with equality constraints, belonging to the class of null-space gradient methods. It uses first order derivatives of both the objective function and the constraints. The step is computed as a sum between a steepest descent step (minimizing the objective functional) and a correction step related to the Newton method (aiming to solve the equality constraints). The linear combination between these two steps involves coefficients similar to Lagrange multipliers which are computed in a natural way based on the Newton method. The algorithm uses no projection and thus the iterates are not feasible; the constraints are only satisfied in the limit (after convergence). A local convergence result is proven for a general nonlinear setting, where both the objective functional and the constraints are not necessarily convex functions.

    Mathematics Subject Classification: Primary: 65K10, 49M15; Secondary: 90C52.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Periodicity cell with model hole (zoomed)

    Figure 2.  Periodically perforated plane $ {\mathbb{R}}^2 _{\hbox{ perf}} $

    Figure 3.  Optimized microstructures with respect to one direction only

    Figure 4.  Algorithm

    Figure 5.  Initial guess and final microstructure for square periodicity

    Figure 7.  Initial guess and final microstructure for hexagonal periodicity

    Figure 6.  History of convergence, zoom of the first 40 iterations and zoom of the last 6 iterations

    Figure 8.  History of convergence, zoom of the first 40 iterations, zoom of the last 8 iterations

  • [1] G. AllaireE. BonnetierG. Francfort and F. Jouve, Shape optimization by the homogenization method, Numer. Math., 76 (1997), 27-68.  doi: 10.1007/s002110050253.
    [2] G. Allaire, Shape Optimization by the Homogenization Method, Applied Mathematical Sciences, 146, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4684-9286-6.
    [3] G. AllaireF. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194 (2004), 363-393.  doi: 10.1016/j.jcp.2003.09.032.
    [4] F. Feppon, G. Allaire and C. Dapogny, Null space gradient flows for constrained optimization with applications to shape optimization, preprint, 2019.
    [5] K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Texts in Applied Mathematics, 39, Springer, Dordrecht, 2009. doi: 10.1007/978-1-4419-0458-4.
    [6] C. Barbarosie, Shape optimization of periodic structures, Computational Mechanics, 30 (2003), 235–246. doi: 10.1007/s00466-002-0382-3.
    [7] C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems, part I: The shape and the topological derivative, Struct. Multidiscip. Optim., 40 (2010), 381-391.  doi: 10.1007/s00158-009-0378-0.
    [8] C. Barbarosie and A.-M. Toader, Shape and topology optimization for periodic problems, part II: Optimization algorithm and numerical examples, Struct. Multidiscip. Optim., 40 (2010), 393-408.  doi: 10.1007/s00158-009-0377-1.
    [9] C. Barbarosie and S. Lopes, A gradient-type algorithm for optimization with constraints, preprint Pre-2011-001, available from http://cmaf.fc.ul.pt/preprints.html, 2011.
    [10] C. Barbarosie and S. Lopes, A generalized notion of compliance, Comptes Rendus Mécanique, 339 (2011), 641–648. doi: 10.1016/j.crme.2011.07.002.
    [11] D. Bertsekas, Nonlinear Programming, 2$^\rm { nd }$ edition, Athena Scientific Optimization and Computation Series, Athena Scientific, Belmont, MA 1999.
    [12] J. Bonnans, J. Gilbert, C. Lemaréchal and C. Sagastizábal, Numerical Optimization – Theoretical and Practical Aspects, Universitext, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-05078-1.
    [13] A. Boresi, R. Schmidt and O. Sidebottom, Advanced Mechanics of Materials, Wiley, 1993.
    [14] P. W. Christensen and A. Klarbring, An Introduction to Structural Optimization, Solid Mechanics and Its Applications, Springer, New York, 2009. doi: 10.1007/978-1-4020-8666-3.
    [15] P. G. Ciarlet, Introduction à l'Analyse Numérique Matricielle et à l'Optimisation, Masson, Paris, 1990.
    [16] R. Fletcher, Practical Methods of Optimization, Constrained optimization, John Wiley & Sons, Chichester, 2013. doi: 10.1002/9781118723203.
    [17] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation and Computation, Advances in Design and Control, 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003. doi: 10.1137/1.9780898718690.
    [18] A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis, European Mathematical Society (EMS), Zürich, 2018. doi: 10.4171/178.
    [19] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1978.
    [20] T. C. Lim, Auxetic Materials and Structures, Engineering Materials, Springer, 2015. doi: 10.1007/978-981-287-275-3.
    [21] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3$^\rm { rd }$ edition, International Series in Operations Research & Management Science, 116, Springer, New York, 2008.
    [22] G. MiltonThe Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511613357.
    [23] J. Nocedal and S. Wright, Numerical Optimization, 2$^\rm { nd }$ edition, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006. doi: 10.1007/b98874.
    [24] A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization, Interaction of Mechanics and Mathematics, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-35245-4.
    [25] A. A. Novotny, J. Sokołowski and A. Żochowski, Applications of the Topological Derivative Method, Studies in Systems, Decision and Control, 188, Springer, 2019. doi: 10.1007/978-3-030-05432-8.
    [26] A. Rothwell, Optimization Methods in Structural Design, Solid Mechanics and its Applications, 242, Springer, 2017. doi: 10.1007/978-3-319-55197-5.
    [27] W. R. Spillers and K. M. MacBain, Structural Optimization, in Computers & Structures, Springer, Dordrecht, 2009. doi: 10.1016/j.compstruc.2011.05.006.
    [28] C. Van Hooricks, O. Sigmund, M. Schevenels, B. S. Lazarov and G. Lombaert, Topology optimization of two-dimensional elastic wave barriers, Journal of Sound and Vibration, 376 (2016), 95–111.
    [29] J. Sokołowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin, 1992.
    [30] A.-M. Toader, The topological derivative of homogenized elastic coefficients of periodic microstructures, J. Control Optim., 49 (2011), 1607-1628.  doi: 10.1137/100782772.
    [31] H. Walker and L. Watson, Least-change secant update methods for underdetermined systems, SIAM J. Numer. Anal., 27 (1990), 1227-1262.  doi: 10.1137/0727071.
    [32] M. Wormser, F. Wein, M. Stingl and C. Korner, Design and additive manufacturing of 3D phononic band gap structures based on gradient based optimization, Materials, 10 (2017). doi: 10.3390/ma10101125.
    [33] H. Yamashita, A differential equation approach to nonlinear programming, Math. Programming, 18 (1980), 155-168.  doi: 10.1007/BF01588311.
    [34] Y. YuanA review of trust region algorithms for optimization, ICIAM, Oxford Univ. Press, Oxford, 2000. 
    [35] Z. ZhuX. Cai and J. Jian, An improved SQP algorithm for solving minimax problems, Appl. Math. Lett., 22 (2009), 464-469.  doi: 10.1016/j.aml.2008.06.017.
  • 加载中

Figures(8)

SHARE

Article Metrics

HTML views(1603) PDF downloads(325) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return