The main purpose of this paper is to establish the existence and multiplicity of positive solutions for a fourth-order boundary value problem with integral condition. By using a new technique of construct a positive cone, we apply the Krasnoselskii compression/expansion and Leggett-Williams fixed point theorems in cones to show our multiplicity results. Finally, a particular case is studied, and the existence of multiple solutions is proved for two different particular functions.
Citation: |
[1] | A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426. doi: 10.1016/S0022-247X(86)80006-3. |
[2] | Z. B. Bai and H. Y. Wang, On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368. doi: 10.1016/S0022-247X(02)00071-9. |
[3] | G. Bonanno and B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176. doi: 10.1016/j.jmaa.2008.01.049. |
[4] | A. Cabada and C. Fernández-Gómez, Constant sign solutions of two-point fourth order problems, Appl. Math. Comput., 263 (2015), 122-133. doi: 10.1016/j.amc.2015.03.112. |
[5] | A. Cabada, J. A. Cid and B. Máquez-Villamarín, Computation of Green's functions for boundary value problems with Mathematica, Appl. Math. Comput., 219 (2012), 1919-1936. doi: 10.1016/j.amc.2012.08.035. |
[6] | A. Cabada, J. Á. Cid and L. Sanchez, Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal., 67 (2007), 1599-1612. doi: 10.1016/j.na.2006.08.002. |
[7] | A. Cabada, Green's Functions in the Theory of Ordinary Differential Equations, SpringerBriefs in Mathematics, Springer, New York, 2014. doi: 10.1007/978-1-4614-9506-2. |
[8] | A. Cabada and L. Saavedra, The eigenvalue characterization for the constant sign Green's functions of (k, n-k) problems, Bound. Value Probl., 2016 (2016), 35 pp. doi: 10.1186/s13661-016-0547-1. |
[9] | A. Cabada and L. Saavedra, Characterization of constant sign Green's function for a two-point boundary-value problem by means of spectral theory, Electron. J. Differential Equations, 2017 (2017), 96 pp. |
[10] | W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971. |
[11] | J. M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundaryvalue problems, Panamer. Math. J., 8 (1998), 23–35. |
[12] | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7. |
[13] | J. R. Graef, J. Henderson and B. Yang, Positive solutions to a fourth-order three point boundary value problem, Discrete Contin. Dyn. Syst., (2009), 269–275. |
[14] | C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304. doi: 10.1080/00036818808839715. |
[15] | R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688. doi: 10.1512/iumj.1979.28.28046. |
[16] | R. Y. Ma, J. H. Zhang and F. M. Shengmao, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422. doi: 10.1006/jmaa.1997.5639. |
[17] | E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary Differential Equations with Applications, Holt, Rhinehart and Winston, New York, 1976. |
[18] | S. Timoshenko, Strength of Materials, Van Nostrand, 1955. |
[19] | S. P. Timoshenko and S. W. Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959. |
[20] | J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673-693. doi: 10.1112/S0024610706023179. |
[21] | J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67. doi: 10.1007/s00030-007-4067-7. |
Graph of