\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiplicity results for fourth order problems related to the theory of deformations beams

  • * Corresponding author: Alberto Cabada

    * Corresponding author: Alberto Cabada 
Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • The main purpose of this paper is to establish the existence and multiplicity of positive solutions for a fourth-order boundary value problem with integral condition. By using a new technique of construct a positive cone, we apply the Krasnoselskii compression/expansion and Leggett-Williams fixed point theorems in cones to show our multiplicity results. Finally, a particular case is studied, and the existence of multiple solutions is proved for two different particular functions.

    Mathematics Subject Classification: Primary: 34B15, 34B27; Secondary: 34B09, 34B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graph of $ \frac{z_M'''(1)-z_M'''(0)-1}{M} $ on $ [-m_0^4, m_1^4) $

  • [1] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl., 116 (1986), 415–426. doi: 10.1016/S0022-247X(86)80006-3.
    [2] Z. B. Bai and H. Y. Wang, On the positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl., 270 (2002), 357-368.  doi: 10.1016/S0022-247X(02)00071-9.
    [3] G. Bonanno and B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl., 343 (2008), 1166-1176.  doi: 10.1016/j.jmaa.2008.01.049.
    [4] A. Cabada and C. Fernández-Gómez, Constant sign solutions of two-point fourth order problems, Appl. Math. Comput., 263 (2015), 122-133.  doi: 10.1016/j.amc.2015.03.112.
    [5] A. CabadaJ. A. Cid and B. Máquez-Villamarín, Computation of Green's functions for boundary value problems with Mathematica, Appl. Math. Comput., 219 (2012), 1919-1936.  doi: 10.1016/j.amc.2012.08.035.
    [6] A. CabadaJ. Á. Cid and L. Sanchez, Positivity and lower and upper solutions for fourth order boundary value problems, Nonlinear Anal., 67 (2007), 1599-1612.  doi: 10.1016/j.na.2006.08.002.
    [7] A. Cabada, Green's Functions in the Theory of Ordinary Differential Equations, SpringerBriefs in Mathematics, Springer, New York, 2014. doi: 10.1007/978-1-4614-9506-2.
    [8] A. Cabada and L. Saavedra, The eigenvalue characterization for the constant sign Green's functions of (k, n-k) problems, Bound. Value Probl., 2016 (2016), 35 pp. doi: 10.1186/s13661-016-0547-1.
    [9] A. Cabada and L. Saavedra, Characterization of constant sign Green's function for a two-point boundary-value problem by means of spectral theory, Electron. J. Differential Equations, 2017 (2017), 96 pp.
    [10] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220. Springer-Verlag, Berlin-New York, 1971.
    [11] J. M. Davis and J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundaryvalue problems, Panamer. Math. J., 8 (1998), 23–35.
    [12] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.
    [13] J. R. Graef, J. Henderson and B. Yang, Positive solutions to a fourth-order three point boundary value problem, Discrete Contin. Dyn. Syst., (2009), 269–275.
    [14] C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation, Appl. Anal., 26 (1988), 289-304.  doi: 10.1080/00036818808839715.
    [15] R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.  doi: 10.1512/iumj.1979.28.28046.
    [16] R. Y. MaJ. H. Zhang and F. M. Shengmao, The method of lower and upper solutions for fourth-order two-point boundary value problems, J. Math. Anal. Appl., 215 (1997), 415-422.  doi: 10.1006/jmaa.1997.5639.
    [17] E. L. Reiss, A. J. Callegari and D. S. Ahluwalia, Ordinary Differential Equations with Applications, Holt, Rhinehart and Winston, New York, 1976.
    [18] S. Timoshenko, Strength of Materials, Van Nostrand, 1955.
    [19] S. P. Timoshenko and S. W. Krieger, Theory of Plates and Shells, McGraw-Hill, New York, 1959.
    [20] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: A unified approach, J. London Math. Soc., 74 (2006), 673-693.  doi: 10.1112/S0024610706023179.
    [21] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, Nonlinear Differ. Equ. Appl., 15 (2008), 45-67.  doi: 10.1007/s00030-007-4067-7.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(1722) PDF downloads(488) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return