February  2020, 25(2): 545-554. doi: 10.3934/dcdsb.2019253

Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach

1. 

Departamento de Matemáticas, Universidade de Vigo, 32004, Campus de Ourense, Spain

2. 

CMAFcIO - Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

* Corresponding author: José Ángel Cid

Dedicated to Professor Juan José Nieto on the occasion of his 60th birthday.

Received  January 2019 Revised  May 2019 Published  November 2019

Fund Project: J. Á. Cid was partially supported by Ministerio de Educación y Ciencia, Spain, and FEDER, Project MTM2017-85054-C2-1-P and L. Sanchez was supported by Fundação para a Ciência e a Tecnologia, UID/MAT/04561/2019

We deal with the existence of nonnegative and nontrivial $ T $–periodic solutions for the equation $ x'' = r(t)x^{\alpha}-s(t)x^{\beta} $ where $ r $ and $ s $ are continuous $ T $–periodic functions and $ 0<\alpha<\beta<1 $. This equation has been studied in connection with the valveless pumping phenomenon and we will take advantage of its variational structure in order to guarantee its solvability by means of the mountain pass theorem of Ambrosetti and Rabinowitz.

Citation: José Ángel Cid, Luís Sanchez. Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 545-554. doi: 10.3934/dcdsb.2019253
References:
[1]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69 (1987), 310-321.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[2]

A. R. Chouikha, Monotonicity of the period function for some planar differential systems. Ⅰ. Conservative and quadratic systems, Appl. Math., 32 (2005), 305-325.  doi: 10.4064/am32-3-5.  Google Scholar

[3]

S.-N. Chow and D. Wang, On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat., 111 (1986), 14–25, 89.  Google Scholar

[4]

J. A. CidG. InfanteM. Tvrdý and M. Zima, A topological approach to periodic oscillations related to the Liebau phenomenon, J. Math. Anal. Appl., 423 (2015), 1546-1556.  doi: 10.1016/j.jmaa.2014.10.054.  Google Scholar

[5]

J. A. CidG. InfanteM. Tvrdý and M. Zima, New results for the Liebau phenomenon via fixed point index, Nonlinear Anal. Real World Appl., 35 (2017), 457-469.  doi: 10.1016/j.nonrwa.2016.11.009.  Google Scholar

[6]

J. A. CidG. Propst and M. Tvrdý, On the pumping effect in a pipe/tank flow configuration with friction, Phys. D, 273/274 (2014), 28-33.  doi: 10.1016/j.physd.2014.01.010.  Google Scholar

[7]

I. Coelho and L. Sanchez, Travelling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[8]

P. Drábek and J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[9]

A. Gavioli and L. Sanchez, Positive homoclinic solutions to some Schrödinger type equations, Differential Integral Equations, 29 (2016), 665-682.   Google Scholar

[10]

G. Propst, Pumping effects in models of periodically forced flow configurations, Phys. D, 217 (2006), 193-201.  doi: 10.1016/j.physd.2006.04.007.  Google Scholar

[11]

R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[12]

A. Sfecci, From isochronous potentials to isochronous systems, J. Differential Equations, 258 (2015), 1791-1800.  doi: 10.1016/j.jde.2014.11.013.  Google Scholar

[13] P. J. Torres, Mathematical Models with Singularities. A Zoo of Singular Creatures, Atlantis Briefs in Differential Equations, 1. Atlantis Press, Paris, 2015.  doi: 10.2991/978-94-6239-106-2.  Google Scholar
[14]

F. WangJ. A. Cid and M. Zima, Lyapunov stability for regular equations and applications to the Liebau phenomenon, Discrete Contin. Dyn. Syst., 38 (2018), 4657-4674.  doi: 10.3934/dcds.2018204.  Google Scholar

[15]

W. S. ZhouX. L. QinG. K. Xu and X. D. Wei, On the one-dimensional p-Laplacian with a singular nonlinearity, Nonlinear Anal., 75 (2012), 3994-4005.  doi: 10.1016/j.na.2012.02.015.  Google Scholar

show all references

References:
[1]

C. Chicone, The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69 (1987), 310-321.  doi: 10.1016/0022-0396(87)90122-7.  Google Scholar

[2]

A. R. Chouikha, Monotonicity of the period function for some planar differential systems. Ⅰ. Conservative and quadratic systems, Appl. Math., 32 (2005), 305-325.  doi: 10.4064/am32-3-5.  Google Scholar

[3]

S.-N. Chow and D. Wang, On the monotonicity of the period function of some second order equations, Časopis Pěst. Mat., 111 (1986), 14–25, 89.  Google Scholar

[4]

J. A. CidG. InfanteM. Tvrdý and M. Zima, A topological approach to periodic oscillations related to the Liebau phenomenon, J. Math. Anal. Appl., 423 (2015), 1546-1556.  doi: 10.1016/j.jmaa.2014.10.054.  Google Scholar

[5]

J. A. CidG. InfanteM. Tvrdý and M. Zima, New results for the Liebau phenomenon via fixed point index, Nonlinear Anal. Real World Appl., 35 (2017), 457-469.  doi: 10.1016/j.nonrwa.2016.11.009.  Google Scholar

[6]

J. A. CidG. Propst and M. Tvrdý, On the pumping effect in a pipe/tank flow configuration with friction, Phys. D, 273/274 (2014), 28-33.  doi: 10.1016/j.physd.2014.01.010.  Google Scholar

[7]

I. Coelho and L. Sanchez, Travelling wave profiles in some models with nonlinear diffusion, Appl. Math. Comput., 235 (2014), 469-481.  doi: 10.1016/j.amc.2014.02.104.  Google Scholar

[8]

P. Drábek and J. Milota, Methods of Nonlinear Analysis. Applications to Differential Equations, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007.  Google Scholar

[9]

A. Gavioli and L. Sanchez, Positive homoclinic solutions to some Schrödinger type equations, Differential Integral Equations, 29 (2016), 665-682.   Google Scholar

[10]

G. Propst, Pumping effects in models of periodically forced flow configurations, Phys. D, 217 (2006), 193-201.  doi: 10.1016/j.physd.2006.04.007.  Google Scholar

[11]

R. Schaaf, Global Solution Branches of Two Point Boundary Value Problems, Lecture Notes in Mathematics, 1458. Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0098346.  Google Scholar

[12]

A. Sfecci, From isochronous potentials to isochronous systems, J. Differential Equations, 258 (2015), 1791-1800.  doi: 10.1016/j.jde.2014.11.013.  Google Scholar

[13] P. J. Torres, Mathematical Models with Singularities. A Zoo of Singular Creatures, Atlantis Briefs in Differential Equations, 1. Atlantis Press, Paris, 2015.  doi: 10.2991/978-94-6239-106-2.  Google Scholar
[14]

F. WangJ. A. Cid and M. Zima, Lyapunov stability for regular equations and applications to the Liebau phenomenon, Discrete Contin. Dyn. Syst., 38 (2018), 4657-4674.  doi: 10.3934/dcds.2018204.  Google Scholar

[15]

W. S. ZhouX. L. QinG. K. Xu and X. D. Wei, On the one-dimensional p-Laplacian with a singular nonlinearity, Nonlinear Anal., 75 (2012), 3994-4005.  doi: 10.1016/j.na.2012.02.015.  Google Scholar

Figure 1.  Graph of the potential $ V $ for the values $ r = 12, \, s = 8, \, \alpha = \frac 1 2 $ and $ \beta = \frac 3 4 $
Figure 2.  Phase plane for (3) with the values $ r = 12, \, s = 8, \, \alpha = \frac 1 2 $ and $ \beta = \frac 3 4 $
[1]

Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204

[2]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[3]

Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345

[4]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[5]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[6]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

[7]

Jingxian Sun, Shouchuan Hu. Flow-invariant sets and critical point theory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 483-496. doi: 10.3934/dcds.2003.9.483

[8]

Antonio Ambrosetti, Massimiliano Berti. Applications of critical point theory to homoclinics and complex dynamics. Conference Publications, 1998, 1998 (Special) : 72-78. doi: 10.3934/proc.1998.1998.72

[9]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[10]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[11]

Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075

[12]

Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415

[13]

Salvatore A. Marano, Sunra J. N. Mosconi. Multiple solutions to elliptic inclusions via critical point theory on closed convex sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3087-3102. doi: 10.3934/dcds.2015.35.3087

[14]

Qingdao Huang, Hong Qian. The dynamics of zeroth-order ultrasensitivity: A critical phenomenon in cell biology. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1457-1464. doi: 10.3934/dcdss.2011.4.1457

[15]

Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587

[16]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[17]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[18]

Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307

[19]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[20]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (49)
  • HTML views (35)
  • Cited by (0)

Other articles
by authors

[Back to Top]