-
Previous Article
Well-posedness results for fractional semi-linear wave equations
- DCDS-B Home
- This Issue
-
Next Article
Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach
Existence of homoclinic solutions for a nonlinear fourth order $ p $-Laplacian difference equation
1. | Department of Mathematics, University of Ruse, 7017 Ruse, Bulgaria |
2. | Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria |
The aim of this paper is the study of existence of homoclinic solutions for a nonlinear difference equation involving $ p $-Laplacian. Under suitable growth conditions we prove that the considered problem has at least one homoclinic solution. The proof is based on the mountain-pass theorem with Cerami's condition, Brezis-Lieb lemma and variational method.
References:
[1] |
C. J. Amick and J. F. Toland,
Homoclinic orbits in the dynamic phase space analogy of an elastic strut, European J. Appl. Math., 3 (1992), 97-114.
doi: 10.1017/S0956792500000735. |
[2] |
P. Amster, P. De Nápoli and M. C. Mariani, Existence of solutions for elliptic systems with critical Sobolev exponent, ElectronicJournal of Differential Equations, 2002 (2002), 13 pp. |
[3] |
H. Brézis and E. Lieb,
A relation between pointwise convergence of functions and convergence functionals, Proc. Am. Math. Soc., 88 (1983), 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3. |
[4] |
B. Buffoni,
Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational method, Nonlinear Anal., 26 (1996), 443-462.
doi: 10.1016/0362-546X(94)00290-X. |
[5] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[6] |
C.-Y. Li,
Remarks on homoclinic solutions for semilinear fourth-order ordinary differential equations without periodicity, Appl. Math. J. Chinese Univ. Der. B, 24 (2009), 49-55.
doi: 10.1007/s11766-009-1948-z. |
[7] |
T. X. Li, J. T. Sun and T.-F. Wu,
Existence of homoclinic solutions for a fourth order differential equation with a parameter, Appl. Math. and Comp., 251 (2015), 499-506.
doi: 10.1016/j.amc.2014.11.056. |
[8] |
L. A. Peletier and W. C. Troy, Spatial Patterns: Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and their Applications, 45. Birkhäuser Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0135-9. |
[9] |
L. Saavedra and S. Tersian,
Existence of solutions for nonlinear $p$-Laplacian difference equations, Topological Methods in Nonlinear Analysis, 50 (2017), 151-167.
|
[10] |
L. Saavedra and S. Tersian,
Existence of solutions for 2n-th order nonlinear $p$-Laplacian differential equations, Nonlinear Anal., 34 (2017), 507-519.
doi: 10.1016/j.nonrwa.2016.09.018. |
[11] |
J. T. Sun and T.-F. Wu,
Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation, J. Math. Anal. Appl., 413 (2014), 622-632.
doi: 10.1016/j.jmaa.2013.12.023. |
[12] |
S. Tersian and J. Chaparova,
Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations, J. Math. Anal. Appl., 260 (2001), 490-506.
doi: 10.1006/jmaa.2001.7470. |
show all references
References:
[1] |
C. J. Amick and J. F. Toland,
Homoclinic orbits in the dynamic phase space analogy of an elastic strut, European J. Appl. Math., 3 (1992), 97-114.
doi: 10.1017/S0956792500000735. |
[2] |
P. Amster, P. De Nápoli and M. C. Mariani, Existence of solutions for elliptic systems with critical Sobolev exponent, ElectronicJournal of Differential Equations, 2002 (2002), 13 pp. |
[3] |
H. Brézis and E. Lieb,
A relation between pointwise convergence of functions and convergence functionals, Proc. Am. Math. Soc., 88 (1983), 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3. |
[4] |
B. Buffoni,
Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational method, Nonlinear Anal., 26 (1996), 443-462.
doi: 10.1016/0362-546X(94)00290-X. |
[5] |
I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 19. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-642-74331-3. |
[6] |
C.-Y. Li,
Remarks on homoclinic solutions for semilinear fourth-order ordinary differential equations without periodicity, Appl. Math. J. Chinese Univ. Der. B, 24 (2009), 49-55.
doi: 10.1007/s11766-009-1948-z. |
[7] |
T. X. Li, J. T. Sun and T.-F. Wu,
Existence of homoclinic solutions for a fourth order differential equation with a parameter, Appl. Math. and Comp., 251 (2015), 499-506.
doi: 10.1016/j.amc.2014.11.056. |
[8] |
L. A. Peletier and W. C. Troy, Spatial Patterns: Higher Order Models in Physics and Mechanics, Progress in Nonlinear Differential Equations and their Applications, 45. Birkhäuser Boston, Inc., Boston, MA, 2001.
doi: 10.1007/978-1-4612-0135-9. |
[9] |
L. Saavedra and S. Tersian,
Existence of solutions for nonlinear $p$-Laplacian difference equations, Topological Methods in Nonlinear Analysis, 50 (2017), 151-167.
|
[10] |
L. Saavedra and S. Tersian,
Existence of solutions for 2n-th order nonlinear $p$-Laplacian differential equations, Nonlinear Anal., 34 (2017), 507-519.
doi: 10.1016/j.nonrwa.2016.09.018. |
[11] |
J. T. Sun and T.-F. Wu,
Two homoclinic solutions for a nonperiodic fourth order differential equation with a perturbation, J. Math. Anal. Appl., 413 (2014), 622-632.
doi: 10.1016/j.jmaa.2013.12.023. |
[12] |
S. Tersian and J. Chaparova,
Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations, J. Math. Anal. Appl., 260 (2001), 490-506.
doi: 10.1006/jmaa.2001.7470. |
[1] |
Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745 |
[2] |
Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912 |
[3] |
Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033 |
[4] |
Christopher Grumiau, Marco Squassina, Christophe Troestler. On the Mountain-Pass algorithm for the quasi-linear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1345-1360. doi: 10.3934/dcdsb.2013.18.1345 |
[5] |
Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345 |
[6] |
Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003 |
[7] |
John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533 |
[8] |
To Fu Ma. Positive solutions for a nonlocal fourth order equation of Kirchhoff type. Conference Publications, 2007, 2007 (Special) : 694-703. doi: 10.3934/proc.2007.2007.694 |
[9] |
Chunhua Jin, Jingxue Yin, Zejia Wang. Positive periodic solutions to a nonlinear fourth-order differential equation. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1225-1235. doi: 10.3934/cpaa.2008.7.1225 |
[10] |
M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 |
[11] |
Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493 |
[12] |
Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617 |
[13] |
Zongming Guo, Long Wei. A perturbed fourth order elliptic equation with negative exponent. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4187-4205. doi: 10.3934/dcdsb.2018132 |
[14] |
Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020113 |
[15] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 |
[16] |
José A. Carrillo, Ansgar Jüngel, Shaoqiang Tang. Positive entropic schemes for a nonlinear fourth-order parabolic equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 1-20. doi: 10.3934/dcdsb.2003.3.1 |
[17] |
Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177 |
[18] |
Gang Meng. The optimal upper bound for the first eigenvalue of the fourth order equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6369-6382. doi: 10.3934/dcds.2017276 |
[19] |
Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555 |
[20] |
Craig Cowan, Pierpaolo Esposito, Nassif Ghoussoub. Regularity of extremal solutions in fourth order nonlinear eigenvalue problems on general domains. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1033-1050. doi: 10.3934/dcds.2010.28.1033 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]