February  2020, 25(2): 599-615. doi: 10.3934/dcdsb.2019256

Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities

Department of Mathematics, University of Oviedo, Federico García Lorca 18, 33007 Oviedo, Spain

* Corresponding author: mesa@uniovi.es

Received  February 2019 Revised  May 2019 Published  November 2019

Fund Project: F. Drubi and S. Ibáñez are supported by the Spanish MICINN grant MTM2017-87697-P

A discussion on local bifurcations of codimension one and two is presented for generic unfoldings of Hopf-Bogdanov-Takens singularities of codimension three. Among all identified bifurcations, we focus on Hopf-Zero and Hopf-Hopf bifurcations, since, in certain cases, they can explain the emergence of chaotic dynamics. Moreover, numerical simulations are provided to illustrate that strange attractors appear at least when the second order normal form of the unfolding is considered.

Citation: Fátima Drubi, Santiago Ibáñez, David Rivela. Chaotic behavior in the unfolding of Hopf-Bogdanov-Takens singularities. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 599-615. doi: 10.3934/dcdsb.2019256
References:
[1]

A. AlgabaE. Freire and E. Gamero, Hypernormal form for the Hopf-zero bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1988), 1857-1887.  doi: 10.1142/S0218127498001583.  Google Scholar

[2]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1333-1362.  doi: 10.1142/S0218127499000936.  Google Scholar

[3]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation, Nonlinearity, 12 (1999), 1177-1206.  doi: 10.1088/0951-7715/12/4/324.  Google Scholar

[4]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dynam., 22 (2000), 249-269.  doi: 10.1023/A:1008328027179.  Google Scholar

[5]

A. AlgabaM. MerinoE. FreireE. Gamero and A. J. Rodríguez-Luis, On the Hopf-pitchfork bifurcation in the Chua's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 291-305.  doi: 10.1142/S0218127400000190.  Google Scholar

[6]

I. BaldomáO. Castejón and T. M. Seara, Exponentially small heteroclinic breakdown in the generic Hopf-Zero singularity, J. Dyn. Diff. Equat., 25 (2013), 335-392.  doi: 10.1007/s10884-013-9297-2.  Google Scholar

[7]

I. BaldomáO. Castejón and T. M. Seara, Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (Ⅰ), J. Nonlinear Sci., 28 (2018), 1551-1627.  doi: 10.1007/s00332-018-9458-x.  Google Scholar

[8]

I. BaldomáO. Castejón and T. M. Seara, Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (Ⅱ): The generic case, J. Nonlinear Sci., 28 (2018), 1489-1549.  doi: 10.1007/s00332-018-9459-9.  Google Scholar

[9]

I. Baldomá, S. Ibáñez and T. M. Seara, Hopf-Zero singularities truly unfold chaos, preprint, arXiv: 1903.09023. Google Scholar

[10]

P. G. BarrientosS. Ibáñez and J. A. Rodríguez, Heteroclinic cycles arising in generic unfoldings of nilpotent singularities, J. Dyn. Diff. Equat., 23 (2011), 999-1028.  doi: 10.1007/s10884-011-9230-5.  Google Scholar

[11]

P. G. BarrientosS. Ibáñez and J. A. Rodríguez, Robust cycles unfolding from conservative bifocal homoclinic orbits, Dyn. Syst., 31 (2016), 546-579.  doi: 10.1080/14689367.2016.1170763.  Google Scholar

[12]

H. W. Broer and G. Vegter, Subordinate Šil'nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theory Dynam. Systems, 4 (1984), 509-525.  doi: 10.1017/S0143385700002613.  Google Scholar

[13]

A. DhoogeW. GovaertsY. A. KuznetsovH. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.  doi: 10.1080/13873950701742754.  Google Scholar

[14]

F. DrubiS. Ibáñez and J. Á. Rodríguez, Coupling leads to chaos, J. Differential Equations, 239 (2007), 371-385.  doi: 10.1016/j.jde.2007.05.024.  Google Scholar

[15]

F. DrubiS. Ibáñez and J. Á. Rodríguez, Hopf-pitchfork singularities in coupled systems, Phys. D, 240 (2011), 825-840.  doi: 10.1016/j.physd.2010.12.013.  Google Scholar

[16]

F. Drubi, S. Ibáñez and D. Rivela, A formal classification of Hopf-Bogdanov-Takens singularities of codimension three, J. Math. Anal. Appl., 480 (2019), 123408. doi: 10.1016/j.jmaa.2019.123408.  Google Scholar

[17]

F. DumortierS. IbáñezH. Kokubu and C. Simó, About the unfolding of a Hopf-zero singularity, Discrete Contin. Dyn. Syst., 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[18]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[19]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050.  doi: 10.1088/0951-7715/15/4/304.  Google Scholar

[20]

S. Ibáñez and J. A. Rodríguez, Shilnikov bifurcations in generic $4$-unfoldings of a codimension-$4$ singularity, J. Differential Equations, 120 (1995), 411-428.  doi: 10.1006/jdeq.1995.1116.  Google Scholar

[21]

S. Ibáñez and J. A. Rodríguez, Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three on ${\mathbb R}^3$, J. Differential Equations, 208 (2005), 147-175.  doi: 10.1016/j.jde.2003.08.006.  Google Scholar

[22]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[23]

W. F. Langford and K. J. Zhan, Interactions of Andronov-Hopf and Bogdanov-Takens bifurcations, The Arnoldfest, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 24 (1999), 365-383.   Google Scholar

[24]

L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71.  doi: 10.1007/BF02392766.  Google Scholar

[25]

A. Pumariño and J. A. Rodríguez, Coexistence and Persistence of Strange Attractors, Lecture Notes in Mathematics, 1658. Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0093337.  Google Scholar

[26]

A. Pumariño and J. A. Rodríguez, Coexistence and persistence of infinitely many strange attractors, Ergodic Theory Dynam. Systems, 21 (2001), 1511-1523.  doi: 10.1017/S0143385701001730.  Google Scholar

[27]

L. P. Šil'nikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR, 160 (1965), 558-561.   Google Scholar

[28]

L. P. Šil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Math. USSR Sb., 10 (1970), 91-102.   Google Scholar

[29]

A. Steindl, Numerical investigation of the Hopf-Bogdanov-Takens mode interaction for a fluid-conveying tube, Procedia Engineering, 199 (2017), 857-862.  doi: 10.1016/j.proeng.2017.09.024.  Google Scholar

[30]

F. Takens, Singularities of vector fields, Publ. Math. IHES, (1974), 47–100.  Google Scholar

[31]

C. Tresser, About some theorems by L. P. Šil'nikov, Ann. Inst. H. Poincaré Phys. Théor., 40 (1984), 441-461.   Google Scholar

show all references

References:
[1]

A. AlgabaE. Freire and E. Gamero, Hypernormal form for the Hopf-zero bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1988), 1857-1887.  doi: 10.1142/S0218127498001583.  Google Scholar

[2]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 1333-1362.  doi: 10.1142/S0218127499000936.  Google Scholar

[3]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation, Nonlinearity, 12 (1999), 1177-1206.  doi: 10.1088/0951-7715/12/4/324.  Google Scholar

[4]

A. AlgabaE. FreireE. Gamero and A. J. Rodríguez-Luis, A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dynam., 22 (2000), 249-269.  doi: 10.1023/A:1008328027179.  Google Scholar

[5]

A. AlgabaM. MerinoE. FreireE. Gamero and A. J. Rodríguez-Luis, On the Hopf-pitchfork bifurcation in the Chua's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10 (2000), 291-305.  doi: 10.1142/S0218127400000190.  Google Scholar

[6]

I. BaldomáO. Castejón and T. M. Seara, Exponentially small heteroclinic breakdown in the generic Hopf-Zero singularity, J. Dyn. Diff. Equat., 25 (2013), 335-392.  doi: 10.1007/s10884-013-9297-2.  Google Scholar

[7]

I. BaldomáO. Castejón and T. M. Seara, Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (Ⅰ), J. Nonlinear Sci., 28 (2018), 1551-1627.  doi: 10.1007/s00332-018-9458-x.  Google Scholar

[8]

I. BaldomáO. Castejón and T. M. Seara, Breakdown of a 2D heteroclinic connection in the Hopf-zero singularity (Ⅱ): The generic case, J. Nonlinear Sci., 28 (2018), 1489-1549.  doi: 10.1007/s00332-018-9459-9.  Google Scholar

[9]

I. Baldomá, S. Ibáñez and T. M. Seara, Hopf-Zero singularities truly unfold chaos, preprint, arXiv: 1903.09023. Google Scholar

[10]

P. G. BarrientosS. Ibáñez and J. A. Rodríguez, Heteroclinic cycles arising in generic unfoldings of nilpotent singularities, J. Dyn. Diff. Equat., 23 (2011), 999-1028.  doi: 10.1007/s10884-011-9230-5.  Google Scholar

[11]

P. G. BarrientosS. Ibáñez and J. A. Rodríguez, Robust cycles unfolding from conservative bifocal homoclinic orbits, Dyn. Syst., 31 (2016), 546-579.  doi: 10.1080/14689367.2016.1170763.  Google Scholar

[12]

H. W. Broer and G. Vegter, Subordinate Šil'nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theory Dynam. Systems, 4 (1984), 509-525.  doi: 10.1017/S0143385700002613.  Google Scholar

[13]

A. DhoogeW. GovaertsY. A. KuznetsovH. G. E. Meijer and B. Sautois, New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14 (2008), 147-175.  doi: 10.1080/13873950701742754.  Google Scholar

[14]

F. DrubiS. Ibáñez and J. Á. Rodríguez, Coupling leads to chaos, J. Differential Equations, 239 (2007), 371-385.  doi: 10.1016/j.jde.2007.05.024.  Google Scholar

[15]

F. DrubiS. Ibáñez and J. Á. Rodríguez, Hopf-pitchfork singularities in coupled systems, Phys. D, 240 (2011), 825-840.  doi: 10.1016/j.physd.2010.12.013.  Google Scholar

[16]

F. Drubi, S. Ibáñez and D. Rivela, A formal classification of Hopf-Bogdanov-Takens singularities of codimension three, J. Math. Anal. Appl., 480 (2019), 123408. doi: 10.1016/j.jmaa.2019.123408.  Google Scholar

[17]

F. DumortierS. IbáñezH. Kokubu and C. Simó, About the unfolding of a Hopf-zero singularity, Discrete Contin. Dyn. Syst., 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[18]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-1140-2.  Google Scholar

[19]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050.  doi: 10.1088/0951-7715/15/4/304.  Google Scholar

[20]

S. Ibáñez and J. A. Rodríguez, Shilnikov bifurcations in generic $4$-unfoldings of a codimension-$4$ singularity, J. Differential Equations, 120 (1995), 411-428.  doi: 10.1006/jdeq.1995.1116.  Google Scholar

[21]

S. Ibáñez and J. A. Rodríguez, Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three on ${\mathbb R}^3$, J. Differential Equations, 208 (2005), 147-175.  doi: 10.1016/j.jde.2003.08.006.  Google Scholar

[22]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Second edition, Applied Mathematical Sciences, 112. Springer-Verlag, New York, 1998.  Google Scholar

[23]

W. F. Langford and K. J. Zhan, Interactions of Andronov-Hopf and Bogdanov-Takens bifurcations, The Arnoldfest, Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 24 (1999), 365-383.   Google Scholar

[24]

L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71.  doi: 10.1007/BF02392766.  Google Scholar

[25]

A. Pumariño and J. A. Rodríguez, Coexistence and Persistence of Strange Attractors, Lecture Notes in Mathematics, 1658. Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0093337.  Google Scholar

[26]

A. Pumariño and J. A. Rodríguez, Coexistence and persistence of infinitely many strange attractors, Ergodic Theory Dynam. Systems, 21 (2001), 1511-1523.  doi: 10.1017/S0143385701001730.  Google Scholar

[27]

L. P. Šil'nikov, A case of the existence of a denumerable set of periodic motions, Dokl. Akad. Nauk SSSR, 160 (1965), 558-561.   Google Scholar

[28]

L. P. Šil'nikov, A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Math. USSR Sb., 10 (1970), 91-102.   Google Scholar

[29]

A. Steindl, Numerical investigation of the Hopf-Bogdanov-Takens mode interaction for a fluid-conveying tube, Procedia Engineering, 199 (2017), 857-862.  doi: 10.1016/j.proeng.2017.09.024.  Google Scholar

[30]

F. Takens, Singularities of vector fields, Publ. Math. IHES, (1974), 47–100.  Google Scholar

[31]

C. Tresser, About some theorems by L. P. Šil'nikov, Ann. Inst. H. Poincaré Phys. Théor., 40 (1984), 441-461.   Google Scholar

Figure 1.  Primary bifurcations in the unfolding of a HBT singularity. A sphere $ \lambda_1^2+\lambda_2^2+\mu^2 = \delta $ is fixed and the front view corresponds to $ \lambda_1<0 $. Hence, points (respectively lines) correspond to bifurcation curves (respectively surfaces). We assume that $ \widehat C_{1, 1} <0 $
Figure 3.  Examples of period-doubling and chaotic dynamics close to a Hopf-Zero bifurcation. In all cases, we have $ \lambda_2 = -0.1 $, $ \mu = -0.3 $ and $ \widehat C_{1, 1} = -1 $. Initial conditions are $ x = y = u = v = 0.04 $
Figure 5.  Examples of period-doubling and chaotic dynamics close to a Hopf-Hopf bifurcation. In all cases, we have $ \lambda_2 = 0.21 $, $ \mu = -0.3 $ and $ \widehat C_{1, 1} = -1 $. Initial conditions are $ x = y = u = v = 0.04 $
Figure 2.  Green line corresponds to the segment of parameters where simulations in Figure 3 have been done. Note that we start after the birth of an invariant torus when parameters cross the secondary Hopf bifurcation. This bifurcation curve has been obtained using Matcont [13]
Figure 4.  Red line corresponds to the segment of parameters where simulations in Figure 5 have been done. Note that we start after the birth of an invariant torus when parameters cross the secondary Hopf bifurcation curve. This bifurcation curve has been obtained using Matcont [13]
Table 1.  Cases of HZ bifurcation unfolded by a HBT singularity. With the appropriate choice for coefficients in the normal form of the HBT singularity, any case can be obtained. In Case Ⅲ, it can be expected the emergence of chaotic behavior when higher order terms are considered
$ \lambda_2\widehat C_{1, 1} <0 $ $ \lambda_2\widehat C_{1, 1}>0 $
$ \kappa=-1 $ Case II Case I
$ \kappa=1 $ Case IV Case III
$ \lambda_2\widehat C_{1, 1} <0 $ $ \lambda_2\widehat C_{1, 1}>0 $
$ \kappa=-1 $ Case II Case I
$ \kappa=1 $ Case IV Case III
Table 2.  Cases of HH bifurcation unfolded by a HBT singularity. In Case Ⅵa, it can be expected the emergence of chaotic behavior when higher order terms are considered
$ \widehat C_{1, 1} <0 $ $ 0 <\widehat C_{1, 1} <\frac{1}{4} $ $ \frac{1}{4} <\widehat C_{1, 1} <\frac{1}{2} $ $ \frac{1}{2} <\widehat C_{1, 1} $
$ \kappa=-1 $ Case IVb Case VIIa Case VIIb Case V
$ \kappa=1 $ Case VIa Case Ib Case Ia Case III
$ \widehat C_{1, 1} <0 $ $ 0 <\widehat C_{1, 1} <\frac{1}{4} $ $ \frac{1}{4} <\widehat C_{1, 1} <\frac{1}{2} $ $ \frac{1}{2} <\widehat C_{1, 1} $
$ \kappa=-1 $ Case IVb Case VIIa Case VIIb Case V
$ \kappa=1 $ Case VIa Case Ib Case Ia Case III
[1]

Zhihua Liu, Rong Yuan. Takens–Bogdanov singularity for age structured models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019201

[2]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[3]

Hebai Chen, Xingwu Chen. Global phase portraits of a degenerate Bogdanov-Takens system with symmetry (Ⅱ). Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4141-4170. doi: 10.3934/dcdsb.2018130

[4]

Bing Zeng, Shengfu Deng, Pei Yu. Bogdanov-Takens bifurcation in predator-prey systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020130

[5]

I. Baldomá, Tere M. Seara. The inner equation for generic analytic unfoldings of the Hopf-zero singularity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 323-347. doi: 10.3934/dcdsb.2008.10.323

[6]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[7]

Jicai Huang, Sanhong Liu, Shigui Ruan, Xinan Zhang. Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1041-1055. doi: 10.3934/cpaa.2016.15.1041

[8]

Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1499-1514. doi: 10.3934/mbe.2017078

[9]

Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020115

[10]

Víctor Guíñez, Eduardo Sáez. Versal Unfoldings for rank--2 singularities of positive quadratic differential forms: The remaining case. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 887-904. doi: 10.3934/dcds.2005.12.887

[11]

Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687

[12]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[13]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[14]

Hamid Norouzi Nav, Mohammad Reza Jahed Motlagh, Ahmad Makui. Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1123-1141. doi: 10.3934/jimo.2018002

[15]

Jie Lou, Tommaso Ruggeri, Claudio Tebaldi. Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences & Engineering, 2006, 3 (2) : 313-324. doi: 10.3934/mbe.2006.3.313

[16]

S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173

[17]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[18]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[19]

Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure & Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1

[20]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (44)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]