We present existence and multiplicity principles for second–order discontinuous problems with nonlinear functional conditions. They are based on the method of lower and upper solutions and a recent extension of the Leray–Schauder topological degree to a class of discontinuous operators.
Citation: |
[1] |
H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346-384.
doi: 10.1016/0022-1236(72)90074-2.![]() ![]() ![]() |
[2] |
A. Cabada and R. L. Pouso, Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Analysis, 42 (2000), 1377-1396.
doi: 10.1016/S0362-546X(99)00158-3.![]() ![]() ![]() |
[3] |
A. Cellina and A. Lasota, A new approach to the definition of topological degree for multivalued mappings, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur., 47 (1969), 434-440.
![]() ![]() |
[4] |
C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering, 205. Elsevier B. V., Amsterdam, 2006.
![]() ![]() |
[5] |
C. De Coster and S. Nicaise, Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations, 244 (2008), 599-629.
doi: 10.1016/j.jde.2007.08.008.![]() ![]() ![]() |
[6] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Degree theory for discontinuous operators, Fixed Point Theory, accepted.
![]() |
[7] |
R. Figueroa, R. L. Pouso and J. Rodríguez-López, Extremal solutions for second-order fully discontinuous problems with nonlinear functional boundary conditions, Electron. J. Qual. Theory Differ. Equ., (2018), 14 pp.
![]() ![]() |
[8] |
A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Kluwer Academic, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9.![]() ![]() ![]() |
[9] |
R. López Pouso, Schauder's fixed-point theorem: New applications and a new version for discontinuous operators, Bound. Value Probl., (2012), Art. ID 2012: 92, 14 pp.
doi: 10.1186/1687-2770-2012-92.![]() ![]() ![]() |
[10] |
I. Rachůnková, Upper and lower solutions and multiplicity results, J. Math. Anal. Appl., 246 (2000), 446-464.
doi: 10.1006/jmaa.2000.6798.![]() ![]() ![]() |
[11] |
I. Rachůnková and M. Tvrdý, Existence results for impulsive second order periodic problems, Nonlinear Anal., 59 (2004), 133-146.
doi: 10.1016/j.na.2004.07.006.![]() ![]() ![]() |
[12] |
I. Rachůnková and M. Tvrdý, Impulsive periodic boundary value problem and topological degree, Functional Differential Equations, Israel Seminar, 9 (2002), 471-498.
![]() ![]() |
[13] |
I. Rachůnková and M. Tvrdý, Non-ordered lower and upper functions in second order impulsive periodic problems, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 397-415.
![]() ![]() |
[14] |
I. Rachůnková and M. Tvrdý, Periodic problems with $\phi$-Laplacian involving non-ordered lower and upper functions, Fixed Point Theory, 6 (2005), 99-112.
![]() ![]() |
[15] |
H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th Ed., Boston, Prentice Hall, 2010.
![]() |
[16] |
B. Rudolf, An existence and multiplicity result for a periodic boundary value problem, Math. Bohem., 133 (2008), 41-61.
![]() ![]() |
[17] |
J. R. L. Webb, On degree theory for multivalued mappings and applications, Bolletino Un. Mat. Ital., 9 (1974), 137-158.
![]() ![]() |
[18] |
X. Xian, D. O'Regan and R. P. Agarwal, Multiplicity results via topological degree for impulsive boundary value problems under non-well-ordered upper and lower solution conditions, Bound. Value Probl., (2008), Art. ID 197205, 21 pp.
doi: 10.1155/2008/197205.![]() ![]() ![]() |