• Previous Article
    Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
  • DCDS-B Home
  • This Issue
  • Next Article
    Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions
February  2020, 25(2): 635-650. doi: 10.3934/dcdsb.2019258

Stability for one-dimensional discrete dynamical systems revisited

1. 

Departamento de Matemática Aplicada, ETSI Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain

2. 

Departament d'Economia i Empresa, Universitat Pompeu Fabra, c/ Ramón Trías Fargas 25-27, 08005, Barcelona, Spain

* Corresponding author: Juan Perán

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  January 2019 Revised  May 2019 Published  November 2019

Fund Project: This work was funded by grant MTM2017-85054-C2-2-P (AEI/FEDER, UE) and ETSII-UNED grant 2019-MAT11

We present a new method to study the stability of one-dimensional discrete-time models, which is based on studying the graph of a certain family of functions. The method is closely related to exponent analysis, which the authors introduced to study the global stability of certain intricate convex combinations of maps. We show that the new strategy presented here complements and extends some existing conditions for the global stability. In particular, we provide a global stability condition improving the condition of negative Schwarzian derivative. Besides, we study the relation between this new method and the enveloping technique.

Citation: Daniel Franco, Juan Perán, Juan Segura. Stability for one-dimensional discrete dynamical systems revisited. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 635-650. doi: 10.3934/dcdsb.2019258
References:
[1]

D. J. Allwright, Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.  doi: 10.1137/0134057.  Google Scholar

[2]

F. A. BarthaÁ. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.  doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

S. Buedo-Fernández and E. Liz, On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.  doi: 10.14232/ejqtde.2018.1.43.  Google Scholar

[4]

B. CidF. M. Hilker and E. Liz, Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.  doi: 10.1016/j.mbs.2013.12.003.  Google Scholar

[5]

P. Cull, Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.  doi: 10.1007/BF02459978.  Google Scholar

[6]

P. Cull, Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.  doi: 10.1007/s11538-006-9129-1.  Google Scholar

[7]

P. Cull and J. Chaffee, Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.  doi: 10.1063/1.1291265.  Google Scholar

[8]

M. E. FisherB. S. Goh and T. L. Vincent, Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.  doi: 10.1007/BF02462383.  Google Scholar

[9]

D. FrancoH. Logemann and J. Perán, Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.  doi: 10.1016/j.sysconle.2013.11.012.  Google Scholar

[10]

D. FrancoJ. Perán and J. Segura, Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.  doi: 10.1016/j.mbs.2018.10.002.  Google Scholar

[11]

D. FrancoJ. Perán and J. Segura, Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.  doi: 10.14232/ejqtde.2018.1.101.  Google Scholar

[12]

B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar

[13]

I. Györi and S. I. Trofimchuk, Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.  doi: 10.1080/10236190008808250.  Google Scholar

[14]

V. Jiménez López and E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.  doi: 10.1007/s10884-016-9525-7.  Google Scholar

[15]

S. A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.  doi: 10.1090/qam/1162273.  Google Scholar

[16]

S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.  doi: 10.1016/0040-5809(76)90043-5.  Google Scholar

[17]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.  Google Scholar

[18]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12. doi: 10.1007/s12346-018-00314-4.  Google Scholar

[19]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[20]

C. J. PennycuickR. M. Compton and L. Beckingham, A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.  doi: 10.1016/0022-5193(68)90081-7.  Google Scholar

[21]

J. Perán and D. Franco, Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.  doi: 10.1016/j.aml.2015.02.022.  Google Scholar

[22]

H. Seno, A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.  doi: 10.1016/j.mbs.2008.06.004.  Google Scholar

[23]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.  doi: 10.1142/S0218127495000934.  Google Scholar

[24]

D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[25]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.  Google Scholar

show all references

References:
[1]

D. J. Allwright, Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.  doi: 10.1137/0134057.  Google Scholar

[2]

F. A. BarthaÁ. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.  doi: 10.1080/10236198.2013.804916.  Google Scholar

[3]

S. Buedo-Fernández and E. Liz, On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.  doi: 10.14232/ejqtde.2018.1.43.  Google Scholar

[4]

B. CidF. M. Hilker and E. Liz, Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.  doi: 10.1016/j.mbs.2013.12.003.  Google Scholar

[5]

P. Cull, Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.  doi: 10.1007/BF02459978.  Google Scholar

[6]

P. Cull, Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.  doi: 10.1007/s11538-006-9129-1.  Google Scholar

[7]

P. Cull and J. Chaffee, Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.  doi: 10.1063/1.1291265.  Google Scholar

[8]

M. E. FisherB. S. Goh and T. L. Vincent, Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.  doi: 10.1007/BF02462383.  Google Scholar

[9]

D. FrancoH. Logemann and J. Perán, Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.  doi: 10.1016/j.sysconle.2013.11.012.  Google Scholar

[10]

D. FrancoJ. Perán and J. Segura, Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.  doi: 10.1016/j.mbs.2018.10.002.  Google Scholar

[11]

D. FrancoJ. Perán and J. Segura, Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.  doi: 10.14232/ejqtde.2018.1.101.  Google Scholar

[12]

B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar

[13]

I. Györi and S. I. Trofimchuk, Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.  doi: 10.1080/10236190008808250.  Google Scholar

[14]

V. Jiménez López and E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.  doi: 10.1007/s10884-016-9525-7.  Google Scholar

[15]

S. A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.  doi: 10.1090/qam/1162273.  Google Scholar

[16]

S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.  doi: 10.1016/0040-5809(76)90043-5.  Google Scholar

[17]

E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.  doi: 10.3934/dcdsb.2007.7.191.  Google Scholar

[18]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12. doi: 10.1007/s12346-018-00314-4.  Google Scholar

[19]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.   Google Scholar

[20]

C. J. PennycuickR. M. Compton and L. Beckingham, A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.  doi: 10.1016/0022-5193(68)90081-7.  Google Scholar

[21]

J. Perán and D. Franco, Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.  doi: 10.1016/j.aml.2015.02.022.  Google Scholar

[22]

H. Seno, A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.  doi: 10.1016/j.mbs.2008.06.004.  Google Scholar

[23]

A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.  doi: 10.1142/S0218127495000934.  Google Scholar

[24]

D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.  doi: 10.1137/0135020.  Google Scholar

[25]

H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.  Google Scholar

[1]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[2]

Benjamin Webb. Dynamics of functions with an eventual negative Schwarzian derivative. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1393-1408. doi: 10.3934/dcds.2009.24.1393

[3]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[4]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[5]

Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129

[6]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[7]

B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537

[8]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[9]

Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213

[10]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[11]

Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241

[12]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[13]

Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367

[14]

Christopher E. Elmer. The stability of stationary fronts for a discrete nerve axon model. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113-129. doi: 10.3934/mbe.2007.4.113

[15]

Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391

[16]

Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109

[17]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[18]

Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409

[19]

Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523

[20]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (82)
  • HTML views (57)
  • Cited by (0)

Other articles
by authors

[Back to Top]