We present a new method to study the stability of one-dimensional discrete-time models, which is based on studying the graph of a certain family of functions. The method is closely related to
Citation: |
[1] |
D. J. Allwright, Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.
doi: 10.1137/0134057.![]() ![]() ![]() |
[2] |
F. A. Bartha, Á. Garab and T. Krisztin, Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.
doi: 10.1080/10236198.2013.804916.![]() ![]() ![]() |
[3] |
S. Buedo-Fernández and E. Liz, On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.
doi: 10.14232/ejqtde.2018.1.43.![]() ![]() ![]() |
[4] |
B. Cid, F. M. Hilker and E. Liz, Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.
doi: 10.1016/j.mbs.2013.12.003.![]() ![]() ![]() |
[5] |
P. Cull, Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.
doi: 10.1007/BF02459978.![]() ![]() ![]() |
[6] |
P. Cull, Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.
doi: 10.1007/s11538-006-9129-1.![]() ![]() ![]() |
[7] |
P. Cull and J. Chaffee, Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.
doi: 10.1063/1.1291265.![]() ![]() |
[8] |
M. E. Fisher, B. S. Goh and T. L. Vincent, Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.
doi: 10.1007/BF02462383.![]() ![]() ![]() |
[9] |
D. Franco, H. Logemann and J. Perán, Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012.![]() ![]() ![]() |
[10] |
D. Franco, J. Perán and J. Segura, Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.
doi: 10.1016/j.mbs.2018.10.002.![]() ![]() ![]() |
[11] |
D. Franco, J. Perán and J. Segura, Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.
doi: 10.14232/ejqtde.2018.1.101.![]() ![]() ![]() |
[12] |
B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012.
![]() |
[13] |
I. Györi and S. I. Trofimchuk, Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.
doi: 10.1080/10236190008808250.![]() ![]() ![]() |
[14] |
V. Jiménez López and E. Parreño, L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.
doi: 10.1007/s10884-016-9525-7.![]() ![]() ![]() |
[15] |
S. A. Kuruklis and G. Ladas, Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.
doi: 10.1090/qam/1162273.![]() ![]() ![]() |
[16] |
S. A. Levin and R. M. May, A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.
doi: 10.1016/0040-5809(76)90043-5.![]() ![]() ![]() |
[17] |
E. Liz, Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.
doi: 10.3934/dcdsb.2007.7.191.![]() ![]() ![]() |
[18] |
E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12.
doi: 10.1007/s12346-018-00314-4.![]() ![]() |
[19] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.
![]() |
[20] |
C. J. Pennycuick, R. M. Compton and L. Beckingham, A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.
doi: 10.1016/0022-5193(68)90081-7.![]() ![]() |
[21] |
J. Perán and D. Franco, Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.
doi: 10.1016/j.aml.2015.02.022.![]() ![]() ![]() |
[22] |
H. Seno, A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.
doi: 10.1016/j.mbs.2008.06.004.![]() ![]() ![]() |
[23] |
A. N. Sharkovskiĭ, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.
doi: 10.1142/S0218127495000934.![]() ![]() ![]() |
[24] |
D. Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020.![]() ![]() ![]() |
[25] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003.
![]() ![]() |