-
Previous Article
Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
- DCDS-B Home
- This Issue
-
Next Article
Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions
Stability for one-dimensional discrete dynamical systems revisited
1. | Departamento de Matemática Aplicada, ETSI Industriales, Universidad Nacional de Educación a Distancia (UNED), c/ Juan del Rosal 12, 28040, Madrid, Spain |
2. | Departament d'Economia i Empresa, Universitat Pompeu Fabra, c/ Ramón Trías Fargas 25-27, 08005, Barcelona, Spain |
We present a new method to study the stability of one-dimensional discrete-time models, which is based on studying the graph of a certain family of functions. The method is closely related to exponent analysis, which the authors introduced to study the global stability of certain intricate convex combinations of maps. We show that the new strategy presented here complements and extends some existing conditions for the global stability. In particular, we provide a global stability condition improving the condition of negative Schwarzian derivative. Besides, we study the relation between this new method and the enveloping technique.
References:
[1] |
D. J. Allwright,
Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.
doi: 10.1137/0134057. |
[2] |
F. A. Bartha, Á. Garab and T. Krisztin,
Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.
doi: 10.1080/10236198.2013.804916. |
[3] |
S. Buedo-Fernández and E. Liz,
On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.
doi: 10.14232/ejqtde.2018.1.43. |
[4] |
B. Cid, F. M. Hilker and E. Liz,
Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.
doi: 10.1016/j.mbs.2013.12.003. |
[5] |
P. Cull,
Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.
doi: 10.1007/BF02459978. |
[6] |
P. Cull,
Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.
doi: 10.1007/s11538-006-9129-1. |
[7] |
P. Cull and J. Chaffee,
Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.
doi: 10.1063/1.1291265. |
[8] |
M. E. Fisher, B. S. Goh and T. L. Vincent,
Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.
doi: 10.1007/BF02462383. |
[9] |
D. Franco, H. Logemann and J. Perán,
Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012. |
[10] |
D. Franco, J. Perán and J. Segura,
Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.
doi: 10.1016/j.mbs.2018.10.002. |
[11] |
D. Franco, J. Perán and J. Segura,
Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.
doi: 10.14232/ejqtde.2018.1.101. |
[12] |
B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar |
[13] |
I. Györi and S. I. Trofimchuk,
Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.
doi: 10.1080/10236190008808250. |
[14] |
V. Jiménez López and E. Parreño,
L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.
doi: 10.1007/s10884-016-9525-7. |
[15] |
S. A. Kuruklis and G. Ladas,
Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.
doi: 10.1090/qam/1162273. |
[16] |
S. A. Levin and R. M. May,
A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.
doi: 10.1016/0040-5809(76)90043-5. |
[17] |
E. Liz,
Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.
doi: 10.3934/dcdsb.2007.7.191. |
[18] |
E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12.
doi: 10.1007/s12346-018-00314-4. |
[19] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[20] |
C. J. Pennycuick, R. M. Compton and L. Beckingham,
A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.
doi: 10.1016/0022-5193(68)90081-7. |
[21] |
J. Perán and D. Franco,
Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.
doi: 10.1016/j.aml.2015.02.022. |
[22] |
H. Seno,
A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.
doi: 10.1016/j.mbs.2008.06.004. |
[23] |
A. N. Sharkovskiĭ,
Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.
doi: 10.1142/S0218127495000934. |
[24] |
D. Singer,
Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[25] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
show all references
References:
[1] |
D. J. Allwright,
Hypergraphic functions and bifurcations in recurrence relations, SIAM J. Appl. Math., 34 (1978), 687-691.
doi: 10.1137/0134057. |
[2] |
F. A. Bartha, Á. Garab and T. Krisztin,
Local stability implies global stability for the 2-dimensional ricker map, J. Difference Equ. Appl., 19 (2013), 2043-2078.
doi: 10.1080/10236198.2013.804916. |
[3] |
S. Buedo-Fernández and E. Liz,
On the stability properties of a delay differential neoclassical model of economic growth, Electron. J. Qual. Theory of Differ. Equ., 43 (2018), 1-14.
doi: 10.14232/ejqtde.2018.1.43. |
[4] |
B. Cid, F. M. Hilker and E. Liz,
Harvest timing and its population dynamic consequences in a discrete single-species model, Math. Biosci., 248 (2014), 78-87.
doi: 10.1016/j.mbs.2013.12.003. |
[5] |
P. Cull,
Stability of discrete one-dimensional population models, Bull. Math. Biol., 50 (1988), 67-75.
doi: 10.1007/BF02459978. |
[6] |
P. Cull,
Population models: Stability in one dimension, Bull. Math. Biol., 69 (2007), 989-1017.
doi: 10.1007/s11538-006-9129-1. |
[7] |
P. Cull and J. Chaffee,
Stability in discrete population models, AIP Conference Proceedings, 517 (2000), 263-276.
doi: 10.1063/1.1291265. |
[8] |
M. E. Fisher, B. S. Goh and T. L. Vincent,
Some stability conditions for discrete-time single species models, Bull. Math. Biol., 41 (1979), 861-875.
doi: 10.1007/BF02462383. |
[9] |
D. Franco, H. Logemann and J. Perán,
Global stability of an age-structured population model, Syst. Control Lett., 65 (2014), 30-36.
doi: 10.1016/j.sysconle.2013.11.012. |
[10] |
D. Franco, J. Perán and J. Segura,
Effect of harvest timing on the dynamics of the Ricker-Seno model, Math. Biosci., 306 (2018), 180-185.
doi: 10.1016/j.mbs.2018.10.002. |
[11] |
D. Franco, J. Perán and J. Segura,
Global stability of discrete dynamical systems via exponent analysis: Applications to harvesting population models, Electron. J. Qual. Theory Differ. Equ., 101 (2018), 1-22.
doi: 10.14232/ejqtde.2018.1.101. |
[12] |
B.-S. Goh, Management and Analysis of Biological Populations, vol. 8, Elsevier, 2012. Google Scholar |
[13] |
I. Györi and S. I. Trofimchuk,
Global attractivity and persistence in a discrete population model, J. Difference Equ. Appl., 6 (2000), 647-665.
doi: 10.1080/10236190008808250. |
[14] |
V. Jiménez López and E. Parreño,
L.A.S. and negative Schwarzian derivative do not imply G.A.S. in Clark's equation, J. Dynam. Differential Equations, 28 (2016), 339-374.
doi: 10.1007/s10884-016-9525-7. |
[15] |
S. A. Kuruklis and G. Ladas,
Oscillations and global attractivity in a discrete delay logistic model, Quart. Appl. Math., 50 (1992), 227-233.
doi: 10.1090/qam/1162273. |
[16] |
S. A. Levin and R. M. May,
A note on difference-delay equations, Theor. Popul. Biol., 9 (1976), 178-187.
doi: 10.1016/0040-5809(76)90043-5. |
[17] |
E. Liz,
Local stability implies global stability in some one-dimensional discrete single-species models, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 191-199.
doi: 10.3934/dcdsb.2007.7.191. |
[18] |
E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., published online, (2019), 1–12.
doi: 10.1007/s12346-018-00314-4. |
[19] |
R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. Google Scholar |
[20] |
C. J. Pennycuick, R. M. Compton and L. Beckingham,
A computer model for simulating the growth of a population, or of two interacting populations, J. Theor. Biol., 18 (1968), 316-329.
doi: 10.1016/0022-5193(68)90081-7. |
[21] |
J. Perán and D. Franco,
Global convergence of the second order Ricker equation, Appl. Math. Lett., 47 (2015), 47-53.
doi: 10.1016/j.aml.2015.02.022. |
[22] |
H. Seno,
A paradox in discrete single species population dynamics with harvesting/thinning, Math. Biosci., 214 (2008), 63-69.
doi: 10.1016/j.mbs.2008.06.004. |
[23] |
A. N. Sharkovskiĭ,
Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 1263-1273.
doi: 10.1142/S0218127495000934. |
[24] |
D. Singer,
Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math., 35 (1978), 260-267.
doi: 10.1137/0135020. |
[25] |
H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
[1] |
Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627 |
[2] |
Benjamin Webb. Dynamics of functions with an eventual negative Schwarzian derivative. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1393-1408. doi: 10.3934/dcds.2009.24.1393 |
[3] |
Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105 |
[4] |
Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19 |
[5] |
Karl P. Hadeler. Quiescent phases and stability in discrete time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 129-152. doi: 10.3934/dcdsb.2015.20.129 |
[6] |
Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701 |
[7] |
B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537 |
[8] |
Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091 |
[9] |
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213 |
[10] |
Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347 |
[11] |
Jianhong Wu, Weiguang Yao, Huaiping Zhu. Immune system memory realization in a population model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 241-259. doi: 10.3934/dcdsb.2007.8.241 |
[12] |
Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 |
[13] |
Xiang-Ping Yan, Wan-Tong Li. Stability and Hopf bifurcations for a delayed diffusion system in population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 367-399. doi: 10.3934/dcdsb.2012.17.367 |
[14] |
Christopher E. Elmer. The stability of stationary fronts for a discrete nerve axon model. Mathematical Biosciences & Engineering, 2007, 4 (1) : 113-129. doi: 10.3934/mbe.2007.4.113 |
[15] |
Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391 |
[16] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[17] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[18] |
Yicang Zhou, Zhien Ma. Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences & Engineering, 2009, 6 (2) : 409-425. doi: 10.3934/mbe.2009.6.409 |
[19] |
Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523 |
[20] |
Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]