
-
Previous Article
Schrödinger type operators on local generalized Morrey spaces related to certain nonnegative potentials
- DCDS-B Home
- This Issue
-
Next Article
Stability for one-dimensional discrete dynamical systems revisited
Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem
1. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Facultat de Ciències, 08193 Bellaterra (Barcelona), Spain |
2. | Departament de Matemàtiques, Universitat Politècnica de Catalunya, Colom 1, 08222 Terrassa, Spain |
We present a systematic methodology to determine and locate analytically isolated periodic points of discrete and continuous dynamical systems with algebraic nature. We apply this method to a wide range of examples, including a one-parameter family of counterexamples to the discrete Markus-Yamabe conjecture (La Salle conjecture); the study of the low periods of a Lotka-Volterra-type map; the existence of three limit cycles for a piecewise linear planar vector field; a new counterexample of Kouchnirenko conjecture; and an alternative proof of the existence of a class of symmetric central configuration of the $ (1+4) $-body problem.
References:
[1] |
Y. Avishai and D. Berend,
Transmission through a Thue-Morse chain, Phys. Rev. B., 45 (1992), 2717-2724.
doi: 10.1103/PhysRevB.45.2717. |
[2] |
F. Balibrea, J. L. García Guirao, M. Lampart and J. Llibre,
Dynamics of a Lotka-Volterra map, Fundamenta Mathematicae, 191 (2006), 265-279.
doi: 10.4064/fm191-3-5. |
[3] |
J. Bernat and J. Llibre,
Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 337-379.
|
[4] |
J. Casasayas, J. Llibre and A. Nunes,
Central configurations of the planar 1+n-body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[5] |
A. Cima, A. Gasull and F. Mañosas,
The discrete Markus-Yamabe problem, Nonlinear Anal. TMA, 35 (1999), 343-354.
doi: 10.1016/S0362-546X(97)00715-3. |
[6] |
A. Cima, A. Gasull and F. Mañosas,
On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition, Publ. Mat., 58 (2014), 167-178.
doi: 10.5565/PUBLMAT_Extra14_09. |
[7] |
A. Cima, A. van den Essen, A. Gasull, E. Hubbers and F. Mañosas,
A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457.
doi: 10.1006/aima.1997.1673. |
[8] |
J. M. Cors, J. Llibre and M. Ollé,
Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[9] |
A. Dickenstein, J. M. Rojas, K. Rusek and J. Shih,
Extremal Real Algebraic Geometry and $\mathcal{A}$-Discriminants, Moscow Math. Journal, 7 (2007), 425-452,574.
doi: 10.17323/1609-4514-2007-7-3-425-452. |
[10] |
G. H. Erjaee and F. M. Dannan,
Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifurcation and Chaos, 14 (2004), 4301-4308.
doi: 10.1142/S0218127404011946. |
[11] |
E. Freire, E. Ponce and F. Torres,
The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58 (2014), 221-253.
doi: 10.5565/PUBLMAT_Extra14_13. |
[12] |
J. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation diagram and stability for a one-parameter family of planar vector fields, J. Math. Anal. Appl., 413 (2014), 321-342.
doi: 10.1016/j.jmaa.2013.11.047. |
[13] |
J. D. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation values for a familiy of planar vector fields of degree five, Discrete Contin. Dyn. Syst. A, 35 (2015), 669-701.
doi: 10.3934/dcds.2015.35.669. |
[14] |
A. Gasull, M. Llorens and V. Mañosa,
Periodic points of a Landen transformation, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018), 232-245.
doi: 10.1016/j.cnsns.2018.04.020. |
[15] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[16] |
C. Gutiérrez,
A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627-671.
doi: 10.1016/S0294-1449(16)30147-0. |
[17] |
B. Haas,
A simple counterexample to Kouchnirenko's conjecture, Beiträge zur Algebra und Geometrie, 43 (2002), 1-8.
|
[18] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. A, 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[19] |
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, Inc., New York, 1994. |
[20] |
A. G. Khovanskiǐ,
On a class of systems of transcendental equations, Doklady Akad. Nauk. SSSR, 255 (1980), 804-807.
|
[21] |
W. Kulpa,
The Poincaré-Miranda theorem, Amer. Math. Month., 104 (1997), 545-550.
doi: 10.2307/2975081. |
[22] |
J. P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. |
[23] |
T.-Y. Li, J. M. Rojas and X. S. Wang,
Counting real connected components of trinomial curve intersections and m-nomial hypersurfaces, Discrete Comput. Geom., 30 (2003), 379-414.
doi: 10.1007/s00454-003-2834-8. |
[24] |
J. Llibre,
On the central configurations of the n-body problem, Appl. Math. Nonlinear Sci., 2 (2017), 509-518.
doi: 10.21042/AMNS.2017.2.00042. |
[25] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[26] |
P. Maličký,
Interior periodic points of a Lotka-Volterra map, J. Difference Eq. Appl., 18 (2012), 553-567.
doi: 10.1080/10236198.2011.583241. |
[27] |
L. Markus and H. Yamabe,
Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305-317.
|
[28] |
C. Miranda,
Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.
|
[29] |
H. Poincaré, Sur certaines solutions particulieres du probléme des trois corps, Bull. Astronomique, 1 (1884), 63-74. Google Scholar |
[30] |
H. Poincaré, Sur les courbes définies par une équation différentielle Ⅳ, J. Math. Pures Appl., 85 (1886), 151-217. Google Scholar |
[31] |
A. N. Sharkovskiǐ, Low dimensional dynamics, Tagungsbericht 20/1993, Proceedings of Mathematisches Forschungsinstitut Oberwolfach, (1993), 17. Google Scholar |
[32] |
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002.
doi: 10.1007/978-0-387-21738-3. |
[33] |
M. N. Vrahatis,
A short proof and a Generalization of Miranda's existence Theorem, Proc. Amer. Math. Soc., 107 (1989), 701-703.
doi: 10.2307/2048168. |
show all references
References:
[1] |
Y. Avishai and D. Berend,
Transmission through a Thue-Morse chain, Phys. Rev. B., 45 (1992), 2717-2724.
doi: 10.1103/PhysRevB.45.2717. |
[2] |
F. Balibrea, J. L. García Guirao, M. Lampart and J. Llibre,
Dynamics of a Lotka-Volterra map, Fundamenta Mathematicae, 191 (2006), 265-279.
doi: 10.4064/fm191-3-5. |
[3] |
J. Bernat and J. Llibre,
Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 337-379.
|
[4] |
J. Casasayas, J. Llibre and A. Nunes,
Central configurations of the planar 1+n-body problem, Celestial Mech. Dynam. Astronom., 60 (1994), 273-288.
doi: 10.1007/BF00693325. |
[5] |
A. Cima, A. Gasull and F. Mañosas,
The discrete Markus-Yamabe problem, Nonlinear Anal. TMA, 35 (1999), 343-354.
doi: 10.1016/S0362-546X(97)00715-3. |
[6] |
A. Cima, A. Gasull and F. Mañosas,
On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition, Publ. Mat., 58 (2014), 167-178.
doi: 10.5565/PUBLMAT_Extra14_09. |
[7] |
A. Cima, A. van den Essen, A. Gasull, E. Hubbers and F. Mañosas,
A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131 (1997), 453-457.
doi: 10.1006/aima.1997.1673. |
[8] |
J. M. Cors, J. Llibre and M. Ollé,
Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89 (2004), 319-342.
doi: 10.1023/B:CELE.0000043569.25307.ab. |
[9] |
A. Dickenstein, J. M. Rojas, K. Rusek and J. Shih,
Extremal Real Algebraic Geometry and $\mathcal{A}$-Discriminants, Moscow Math. Journal, 7 (2007), 425-452,574.
doi: 10.17323/1609-4514-2007-7-3-425-452. |
[10] |
G. H. Erjaee and F. M. Dannan,
Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifurcation and Chaos, 14 (2004), 4301-4308.
doi: 10.1142/S0218127404011946. |
[11] |
E. Freire, E. Ponce and F. Torres,
The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58 (2014), 221-253.
doi: 10.5565/PUBLMAT_Extra14_13. |
[12] |
J. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation diagram and stability for a one-parameter family of planar vector fields, J. Math. Anal. Appl., 413 (2014), 321-342.
doi: 10.1016/j.jmaa.2013.11.047. |
[13] |
J. D. García-Saldaña, A. Gasull and H. Giacomini,
Bifurcation values for a familiy of planar vector fields of degree five, Discrete Contin. Dyn. Syst. A, 35 (2015), 669-701.
doi: 10.3934/dcds.2015.35.669. |
[14] |
A. Gasull, M. Llorens and V. Mañosa,
Periodic points of a Landen transformation, Commun. Nonlinear Sci. Numer. Simulat., 64 (2018), 232-245.
doi: 10.1016/j.cnsns.2018.04.020. |
[15] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[16] |
C. Gutiérrez,
A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12 (1995), 627-671.
doi: 10.1016/S0294-1449(16)30147-0. |
[17] |
B. Haas,
A simple counterexample to Kouchnirenko's conjecture, Beiträge zur Algebra und Geometrie, 43 (2002), 1-8.
|
[18] |
S.-M. Huan and X.-S. Yang,
On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. A, 32 (2012), 2147-2164.
doi: 10.3934/dcds.2012.32.2147. |
[19] |
E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, Inc., New York, 1994. |
[20] |
A. G. Khovanskiǐ,
On a class of systems of transcendental equations, Doklady Akad. Nauk. SSSR, 255 (1980), 804-807.
|
[21] |
W. Kulpa,
The Poincaré-Miranda theorem, Amer. Math. Month., 104 (1997), 545-550.
doi: 10.2307/2975081. |
[22] |
J. P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. |
[23] |
T.-Y. Li, J. M. Rojas and X. S. Wang,
Counting real connected components of trinomial curve intersections and m-nomial hypersurfaces, Discrete Comput. Geom., 30 (2003), 379-414.
doi: 10.1007/s00454-003-2834-8. |
[24] |
J. Llibre,
On the central configurations of the n-body problem, Appl. Math. Nonlinear Sci., 2 (2017), 509-518.
doi: 10.21042/AMNS.2017.2.00042. |
[25] |
J. Llibre and E. Ponce,
Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19 (2012), 325-335.
|
[26] |
P. Maličký,
Interior periodic points of a Lotka-Volterra map, J. Difference Eq. Appl., 18 (2012), 553-567.
doi: 10.1080/10236198.2011.583241. |
[27] |
L. Markus and H. Yamabe,
Global stability criteria for differential systems, Osaka Math. Journal, 12 (1960), 305-317.
|
[28] |
C. Miranda,
Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3 (1940), 5-7.
|
[29] |
H. Poincaré, Sur certaines solutions particulieres du probléme des trois corps, Bull. Astronomique, 1 (1884), 63-74. Google Scholar |
[30] |
H. Poincaré, Sur les courbes définies par une équation différentielle Ⅳ, J. Math. Pures Appl., 85 (1886), 151-217. Google Scholar |
[31] |
A. N. Sharkovskiǐ, Low dimensional dynamics, Tagungsbericht 20/1993, Proceedings of Mathematisches Forschungsinstitut Oberwolfach, (1993), 17. Google Scholar |
[32] |
J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002.
doi: 10.1007/978-0-387-21738-3. |
[33] |
M. N. Vrahatis,
A short proof and a Generalization of Miranda's existence Theorem, Proc. Amer. Math. Soc., 107 (1989), 701-703.
doi: 10.2307/2048168. |







[1] |
Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021014 |
[2] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[3] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[4] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[5] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[6] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[7] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[8] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
[9] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[10] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[11] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[12] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[13] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[14] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[15] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[16] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[17] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[18] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[19] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[20] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]