
-
Previous Article
Boundary value problem: Weak solutions induced by fuzzy partitions
- DCDS-B Home
- This Issue
-
Next Article
Positive and increasing solutions of perturbed Hammerstein integral equations with derivative dependence
A note on the Lasota discrete model for blood cell production
1. | Departamento de Matemática Aplicada Ⅱ, Universidade de Vigo, 36310 Vigo, Spain |
2. | Instituto de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain |
In an attempt to explain experimental evidence of chaotic oscillations in blood cell population, A. Lasota suggested in 1977 a discrete-time one-dimensional model for the production of blood cells, and he showed that this equation allows to model the behavior of blood cell population in many clinical cases. Our main aim in this note is to carry out a detailed study of Lasota's equation, in particular revisiting the results in the original paper and showing new interesting phenomena. The considered equation is also suitable to model the dynamics of populations with discrete reproductive seasons, adult survivorship, overcompensating density dependence, and Allee effects. In this context, our results show the rich dynamics of this type of models and point out the subtle interplay between adult survivorship rates and strength of density dependence (including Allee effects).
References:
[1] |
P. A. Abrams,
When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.
doi: 10.1111/j.1461-0248.2009.01282.x. |
[2] |
L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477. Google Scholar |
[3] |
E. Braverman and E. Liz,
Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.
doi: 10.1007/s11071-011-0160-x. |
[4] |
F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.
doi: 10.1093/acprof:oso/9780198570301.001.0001.![]() |
[5] |
A. Lasota,
Ergodic problems in biology, Asterisque, 50 (1977), 239-250.
|
[6] |
E. Liz,
Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.
doi: 10.1007/s12080-009-0064-2. |
[7] |
E. Liz,
A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.
doi: 10.3934/dcdsb.2018066. |
[8] |
E. Liz,
A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.
doi: 10.1007/s11538-017-0382-2. |
[9] |
E. Liz and S. Buedo-Fernández,
A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.
doi: 10.1007/s12346-018-00314-4. |
[10] |
E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp.
doi: 10.1063/1.3432558. |
[11] |
E. Liz and A. Ruiz-Herrera,
The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.
doi: 10.1007/s00285-011-0489-2. |
[12] |
P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar |
[13] | T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999. Google Scholar |
[14] |
S. J. Schreiber,
Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.
doi: 10.1007/s002850000070. |
[15] |
S. J. Schreiber,
Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.
doi: 10.1016/S0040-5809(03)00072-8. |
[16] |
M. Wazewska-Czyzewska and A. Lasota,
Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.
|
[17] |
A. A. Yakubu, N. Li, J. M. Conrad and M. L. Zeeman,
Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.
doi: 10.1016/j.mbs.2011.04.004. |
show all references
References:
[1] |
P. A. Abrams,
When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.
doi: 10.1111/j.1461-0248.2009.01282.x. |
[2] |
L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477. Google Scholar |
[3] |
E. Braverman and E. Liz,
Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.
doi: 10.1007/s11071-011-0160-x. |
[4] |
F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.
doi: 10.1093/acprof:oso/9780198570301.001.0001.![]() |
[5] |
A. Lasota,
Ergodic problems in biology, Asterisque, 50 (1977), 239-250.
|
[6] |
E. Liz,
Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.
doi: 10.1007/s12080-009-0064-2. |
[7] |
E. Liz,
A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.
doi: 10.3934/dcdsb.2018066. |
[8] |
E. Liz,
A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.
doi: 10.1007/s11538-017-0382-2. |
[9] |
E. Liz and S. Buedo-Fernández,
A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.
doi: 10.1007/s12346-018-00314-4. |
[10] |
E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp.
doi: 10.1063/1.3432558. |
[11] |
E. Liz and A. Ruiz-Herrera,
The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.
doi: 10.1007/s00285-011-0489-2. |
[12] |
P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar |
[13] | T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999. Google Scholar |
[14] |
S. J. Schreiber,
Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.
doi: 10.1007/s002850000070. |
[15] |
S. J. Schreiber,
Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.
doi: 10.1016/S0040-5809(03)00072-8. |
[16] |
M. Wazewska-Czyzewska and A. Lasota,
Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.
|
[17] |
A. A. Yakubu, N. Li, J. M. Conrad and M. L. Zeeman,
Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.
doi: 10.1016/j.mbs.2011.04.004. |







[1] |
Ferenc A. Bartha, Ábel Garab. Necessary and sufficient condition for the global stability of a delayed discrete-time single neuron model. Journal of Computational Dynamics, 2014, 1 (2) : 213-232. doi: 10.3934/jcd.2014.1.213 |
[2] |
H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183 |
[3] |
Eduardo Liz. A new flexible discrete-time model for stable populations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2487-2498. doi: 10.3934/dcdsb.2018066 |
[4] |
E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 323-351. doi: 10.3934/dcdsb.2014.19.323 |
[5] |
Nika Lazaryan, Hassan Sedaghat. Extinction and the Allee effect in an age structured Ricker population model with inter-stage interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 731-747. doi: 10.3934/dcdsb.2018040 |
[6] |
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109 |
[7] |
Yun Kang. Permanence of a general discrete-time two-species-interaction model with nonlinear per-capita growth rates. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2123-2142. doi: 10.3934/dcdsb.2013.18.2123 |
[8] |
Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315 |
[9] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[10] |
Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discrete-time systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329-337. doi: 10.3934/naco.2016015 |
[11] |
Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207 |
[12] |
John E. Franke, Abdul-Aziz Yakubu. Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385-408. doi: 10.3934/mbe.2011.8.385 |
[13] |
S. R.-J. Jang. Allee effects in a discrete-time host-parasitoid model with stage structure in the host. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 145-159. doi: 10.3934/dcdsb.2007.8.145 |
[14] |
Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275 |
[15] |
Dan Zhang, Xiaochun Cai, Lin Wang. Complex dynamics in a discrete-time size-structured chemostat model with inhibitory kinetics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3439-3451. doi: 10.3934/dcdsb.2018327 |
[16] |
Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure & Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493 |
[17] |
Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547 |
[18] |
Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734 |
[19] |
Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010 |
[20] |
Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]