February  2020, 25(2): 701-713. doi: 10.3934/dcdsb.2019262

A note on the Lasota discrete model for blood cell production

1. 

Departamento de Matemática Aplicada Ⅱ, Universidade de Vigo, 36310 Vigo, Spain

2. 

Instituto de Matemáticas, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain

Dedicated to Prof. Juan J. Nieto on the occasion of his 60th birthday

Received  January 2019 Revised  March 2019 Published  November 2019

In an attempt to explain experimental evidence of chaotic oscillations in blood cell population, A. Lasota suggested in 1977 a discrete-time one-dimensional model for the production of blood cells, and he showed that this equation allows to model the behavior of blood cell population in many clinical cases. Our main aim in this note is to carry out a detailed study of Lasota's equation, in particular revisiting the results in the original paper and showing new interesting phenomena. The considered equation is also suitable to model the dynamics of populations with discrete reproductive seasons, adult survivorship, overcompensating density dependence, and Allee effects. In this context, our results show the rich dynamics of this type of models and point out the subtle interplay between adult survivorship rates and strength of density dependence (including Allee effects).

Citation: Eduardo Liz, Cristina Lois-Prados. A note on the Lasota discrete model for blood cell production. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 701-713. doi: 10.3934/dcdsb.2019262
References:
[1]

P. A. Abrams, When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.  doi: 10.1111/j.1461-0248.2009.01282.x.  Google Scholar

[2]

L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477.   Google Scholar

[3]

E. Braverman and E. Liz, Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.  doi: 10.1007/s11071-011-0160-x.  Google Scholar

[4] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar
[5]

A. Lasota, Ergodic problems in biology, Asterisque, 50 (1977), 239-250.   Google Scholar

[6]

E. Liz, Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.  doi: 10.1007/s12080-009-0064-2.  Google Scholar

[7]

E. Liz, A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.  doi: 10.3934/dcdsb.2018066.  Google Scholar

[8]

E. Liz, A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.  doi: 10.1007/s11538-017-0382-2.  Google Scholar

[9]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.  doi: 10.1007/s12346-018-00314-4.  Google Scholar

[10]

E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp. doi: 10.1063/1.3432558.  Google Scholar

[11]

E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.  doi: 10.1007/s00285-011-0489-2.  Google Scholar

[12]

P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar

[13] T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999.   Google Scholar
[14]

S. J. Schreiber, Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.  doi: 10.1007/s002850000070.  Google Scholar

[15]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[16]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.   Google Scholar

[17]

A. A. YakubuN. LiJ. M. Conrad and M. L. Zeeman, Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.  doi: 10.1016/j.mbs.2011.04.004.  Google Scholar

show all references

References:
[1]

P. A. Abrams, When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect, Ecol. Lett., 12 (2009), 462-474.  doi: 10.1111/j.1461-0248.2009.01282.x.  Google Scholar

[2]

L. Avilés, Cooperation and non-linear dynamics: An ecological perspective on the evolution of sociality, Evol. Ecol. Res., 1 (1999), 459-477.   Google Scholar

[3]

E. Braverman and E. Liz, Global stabilization of periodic orbits using a proportional feedback control with pulses, Nonlinear Dynam., 67 (2012), 2467-2475.  doi: 10.1007/s11071-011-0160-x.  Google Scholar

[4] F. CourchampL. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation, Oxford University Press, New York, 2008.  doi: 10.1093/acprof:oso/9780198570301.001.0001.  Google Scholar
[5]

A. Lasota, Ergodic problems in biology, Asterisque, 50 (1977), 239-250.   Google Scholar

[6]

E. Liz, Complex dynamics of survival and extinction in simple population models with harvesting, Theor. Ecol., 3 (2010), 209-221.  doi: 10.1007/s12080-009-0064-2.  Google Scholar

[7]

E. Liz, A new flexible discrete-time model for stable populations, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 2487-2498.  doi: 10.3934/dcdsb.2018066.  Google Scholar

[8]

E. Liz, A global picture of the gamma-Ricker map: A flexible discrete-time model with factors of positive and negative density dependence, Bull. Math. Biol., 80 (2018), 417-434.  doi: 10.1007/s11538-017-0382-2.  Google Scholar

[9]

E. Liz and S. Buedo-Fernández, A new formula to get sharp global stability criteria for one-dimensional discrete-time models, Qual. Theory Dyn. Syst., (2019), 1-12.  doi: 10.1007/s12346-018-00314-4.  Google Scholar

[10]

E. Liz and D. Franco, Global stabilization of fixed points using predictive control, Chaos, 20 (2010), 023124, 9 pp. doi: 10.1063/1.3432558.  Google Scholar

[11]

E. Liz and A. Ruiz-Herrera, The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting, J. Math. Biol., 65 (2012), 997-1016.  doi: 10.1007/s00285-011-0489-2.  Google Scholar

[12]

P. J. Mitkowski, Chaos in the Ergodic Theory Approach in the Model of Disturbed Erythropoiesis, Ph.D. Thesis, AGH University of Science and Technology, Cracow, 2011. Google Scholar

[13] T. J. Quinn and R. B. Deriso, Quantitative Fish Dynamics,, Oxford University Press, New York, 1999.   Google Scholar
[14]

S. J. Schreiber, Chaos and population disappearances in simple ecological models, J. Math. Biol., 42 (2001), 239-260.  doi: 10.1007/s002850000070.  Google Scholar

[15]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models, Theor. Popul. Biol., 64 (2003), 201-209.  doi: 10.1016/S0040-5809(03)00072-8.  Google Scholar

[16]

M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the red-blood cell system, Mat. Stos., 6 (1976), 25-40.   Google Scholar

[17]

A. A. YakubuN. LiJ. M. Conrad and M. L. Zeeman, Constant proportion harvest policies: Dynamic implications in the Pacific halibut and Atlantic cod fisheries, Math. Biosci., 232 (2011), 66-77.  doi: 10.1016/j.mbs.2011.04.004.  Google Scholar

Figure 2.1.  Graphs of the map $ F $ for $ \gamma = 0.3 $, $ c = 0.6 $, and different values of $ \sigma $: $ \sigma = 0.6<\sigma^*\approx0.774 $ in red ($ F $ is increasing), and $ \sigma = 0.9>\sigma^* $ in blue ($ F $ has two critical points). The dashed line is the graph of $ y = x $
Figure 2.2.  Graphs of the map $ F' $ (solid, blue) and the line $ y = 0 $ (dashed, black), with c = 1. (a): $ \gamma = 0.25<1 $, $ \sigma = 0.8>\sigma^*\approx0.707 $; (b): $ \gamma = 2>1 $, $ \sigma = 0.9>\sigma^*\approx0.841 $. In both cases, there are two intersection points, that determine the critical points of $ F $
Figure 3.1.  Graphs of the map $ F $ for $ \gamma = 8 $, $ \sigma = 0.8 $, and different values of $ c $: $ c = c^*\approx0.425 $ in blue (one positive fixed point), $ c = 0.4<c^* $ in red (no positive fixed points), and $ c = 0.5>c^* $ in black (two positive fixed points). The dashed line is the graph of $ y = x $
Figure 4.1.  Main bifurcation boundaries and regions with different dynamical behavior for equation (1.2) with $ c = 0.47 $, in the parameter plane $ (\gamma,\sigma) $. The two solid lines represent the extinction boundary (red color) and the stability boundary of the largest positive equilibrium (blue color). The vertical dashed line $ \gamma = 1 $ (from $ \sigma = 0 $ to $ \sigma = c = 0.47 $) is the border between global stability of the unique positive equilibrium and a bistability region, in which both the largest positive equilibrium and the extinction equilibrium are asymptotically stable
Figure 4.2.  Bifurcation diagram showing a bubble for equation (1.2) with $ c = 0.47 $, $ \gamma = 7.65 $, using $ \sigma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria
Figure 4.3.  Bifurcation diagrams for equation (1.2) with $ c = 0.47 $, using $ \sigma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria. For more details, see the text. (a): $ \gamma = 7 $; (b): $ \gamma = 8 $; (c): $ \gamma = 8.5 $ and $ \sigma\in (0,1) $; (d): magnification for $ \gamma = 8.5 $
Figure 4.4.  Bifurcation diagrams for equation (1.2) with $ c = 0.47 $ and different values of $ \sigma $, using $ \gamma $ as the bifurcation parameter. Black dashed lines correspond to unstable equilibria, and red dashed lines to unstable 2-periodic orbits. (a): There are neither oscillations nor extinction windows for $ \sigma = 0.05 $. (b): An extinction window for $ \sigma = 0.1 $. (c): Multiple extinction windows for $ \sigma = 0.9 $
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[3]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[16]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (122)
  • HTML views (108)
  • Cited by (1)

Other articles
by authors

[Back to Top]