February  2020, 25(2): 715-732. doi: 10.3934/dcdsb.2019263

Boundary value problem: Weak solutions induced by fuzzy partitions

Institute for Research and Applications of Fuzzy Modelling, NSC IT4Innovations, University of Ostrava, 30. dubna 22,701 03 Ostrava 1, Czech Republic

* Corresponding author: Irina Perfilieva

Received  January 2019 Revised  August 2019 Published  November 2019

Fund Project: This research was supported by the Czech Ministry of Education, Youth and Sports, project OP VVV (AI-Met4AI): No. CZ.02.1.01/0.0/0.0/17-049/0008414. Additional support was given by the Grant Agency of the Czech Republic, project 18-06915S.

The aim of this paper is to propose a new methodology in the construction of spaces of test functions used in a weak formulation of the Boundary Value Problem. The proposed construction is based on the so called "two dimensional" approach where at first, we select a partition of a domain and second, a dimension of an approximating functional subspace on each partition element. The main advantage consists in the independent selection of the key parameters, aiming at achieving a requested quality of approximation with a reasonable complexity. We give theoretical justification and illustration on examples that confirm our methodology.

Citation: Linh Nguyen, Irina Perfilieva, Michal Holčapek. Boundary value problem: Weak solutions induced by fuzzy partitions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 715-732. doi: 10.3934/dcdsb.2019263
References:
[1]

K. W. Anthony, Advanced Real Analysis, Birkhäuser, 2005. Google Scholar

[2]

I. BabuškaU. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12 (2003), 1-125.  doi: 10.1017/S0962492902000090.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[5] K. W. Cassel, Variational Methods With Applications in Science and Engineering, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139136860.  Google Scholar
[6]

D. Čena, Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 1850061, 27 pp. doi: 10.1142/S0219691318500613.  Google Scholar

[7]

P. Ciarlet, The Finite Element Method for Elliptic Problems, Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[8]

B. C. CuongN. C. Luong and H. V. Long, Approximation properties of fuzzy systems for multi-variables functions, PanAmer. Math. J., 20 (2010), 97-113.   Google Scholar

[9]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[10]

M. HolčapekI. PerfilievaV. Novák and V. Kreinovich, Necessary and sufficient conditions for generalized uniform fuzzy partitions, Fuzzy Sets and Systems, 277 (2015), 97-121.  doi: 10.1016/j.fss.2014.10.017.  Google Scholar

[11]

K. HölligR. Ulrich and W. Joachim, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), 442-462.  doi: 10.1137/S0036142900373208.  Google Scholar

[12]

H. V. Long, A note on the rates of uniform approximation of fuzzy systems, Internat. J. Comput. Intelligence Systems, 4 (2011), 712-727.  doi: 10.2991/ijcis.2011.4.4.24.  Google Scholar

[13]

J. M. Melenk, On approximation in meshless methods, in Frontiers of Numerical Analysis, Universitext, Springer, Berlin, 2005, 65–141. doi: 10.1007/3-540-28884-8_2.  Google Scholar

[14]

L. Nguyen, I. Perfilieva and M. Holčapek, Weak boundary value problem: Fuzzy partition in Galerkin method, World Scientific Proceedings Series on Computer Engineering and Information Science, (2018), 1478–1485. doi: 10.1142/9789813273238_0184.  Google Scholar

[15]

I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems, 157 (2006), 993-1023.  doi: 10.1016/j.fss.2005.11.012.  Google Scholar

[16]

I. PerfilievaA. P. Singh and S. P. Tiwari, On the relationship among $F$-transform, fuzzy rough set and fuzzy topology, Soft Computing, 21 (2017), 3513-3523.  doi: 10.1007/s00500-017-2559-x.  Google Scholar

[17]

I. PerfilievaM. Daňková and B. Bede, Towards a higher degree $F$-transform, Fuzzy Sets and Systems, 180 (2011), 3-19.  doi: 10.1016/j.fss.2010.11.002.  Google Scholar

[18]

I. Perfilieva and P. Vlašánek, F-transform and discrete convolution, Proc. of the EUSFLAT Conf., (2015), 1054–1059. Google Scholar

[19]

D. B. Reddy, Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements, Texts in Applied Mathematics, 27, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0575-3.  Google Scholar

[20]

K. Rektorys, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Co., Dordrecht-Boston, MA, 1977. doi: 10.1007/978-94-011-6450-4.  Google Scholar

[21]

J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51, Springer, Cham, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

J. G. Wang and G. Liu, A point interpolation meshless method based on radial basis functions, Internat. J. Numerical Methods in Engineering, 54 (2002), 1623-1648.  doi: 10.1002/nme.489.  Google Scholar

show all references

References:
[1]

K. W. Anthony, Advanced Real Analysis, Birkhäuser, 2005. Google Scholar

[2]

I. BabuškaU. Banerjee and J. E. Osborn, Survey of meshless and generalized finite element methods: A unified approach, Acta Numer., 12 (2003), 1-125.  doi: 10.1017/S0962492902000090.  Google Scholar

[3]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, 15, Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. doi: 10.1007/978-0-387-70914-7.  Google Scholar

[5] K. W. Cassel, Variational Methods With Applications in Science and Engineering, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9781139136860.  Google Scholar
[6]

D. Čena, Cubic spline wavelets with four vanishing moments on the interval and their applications to option pricing under Kou model, Int. J. Wavelets Multiresolut. Inf. Process., 17 (2019), 1850061, 27 pp. doi: 10.1142/S0219691318500613.  Google Scholar

[7]

P. Ciarlet, The Finite Element Method for Elliptic Problems, Mathematics and its Applications, 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1137/1.9780898719208.  Google Scholar

[8]

B. C. CuongN. C. Luong and H. V. Long, Approximation properties of fuzzy systems for multi-variables functions, PanAmer. Math. J., 20 (2010), 97-113.   Google Scholar

[9]

C. A. J. Fletcher, Computational Galerkin Methods, Springer Series in Computational Physics, Springer-Verlag, New York, 1984. doi: 10.1007/978-3-642-85949-6.  Google Scholar

[10]

M. HolčapekI. PerfilievaV. Novák and V. Kreinovich, Necessary and sufficient conditions for generalized uniform fuzzy partitions, Fuzzy Sets and Systems, 277 (2015), 97-121.  doi: 10.1016/j.fss.2014.10.017.  Google Scholar

[11]

K. HölligR. Ulrich and W. Joachim, Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39 (2001), 442-462.  doi: 10.1137/S0036142900373208.  Google Scholar

[12]

H. V. Long, A note on the rates of uniform approximation of fuzzy systems, Internat. J. Comput. Intelligence Systems, 4 (2011), 712-727.  doi: 10.2991/ijcis.2011.4.4.24.  Google Scholar

[13]

J. M. Melenk, On approximation in meshless methods, in Frontiers of Numerical Analysis, Universitext, Springer, Berlin, 2005, 65–141. doi: 10.1007/3-540-28884-8_2.  Google Scholar

[14]

L. Nguyen, I. Perfilieva and M. Holčapek, Weak boundary value problem: Fuzzy partition in Galerkin method, World Scientific Proceedings Series on Computer Engineering and Information Science, (2018), 1478–1485. doi: 10.1142/9789813273238_0184.  Google Scholar

[15]

I. Perfilieva, Fuzzy transforms: Theory and applications, Fuzzy Sets and Systems, 157 (2006), 993-1023.  doi: 10.1016/j.fss.2005.11.012.  Google Scholar

[16]

I. PerfilievaA. P. Singh and S. P. Tiwari, On the relationship among $F$-transform, fuzzy rough set and fuzzy topology, Soft Computing, 21 (2017), 3513-3523.  doi: 10.1007/s00500-017-2559-x.  Google Scholar

[17]

I. PerfilievaM. Daňková and B. Bede, Towards a higher degree $F$-transform, Fuzzy Sets and Systems, 180 (2011), 3-19.  doi: 10.1016/j.fss.2010.11.002.  Google Scholar

[18]

I. Perfilieva and P. Vlašánek, F-transform and discrete convolution, Proc. of the EUSFLAT Conf., (2015), 1054–1059. Google Scholar

[19]

D. B. Reddy, Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements, Texts in Applied Mathematics, 27, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0575-3.  Google Scholar

[20]

K. Rektorys, Variational Methods in Mathematics, Science and Engineering, D. Reidel Publishing Co., Dordrecht-Boston, MA, 1977. doi: 10.1007/978-94-011-6450-4.  Google Scholar

[21]

J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, 51, Springer, Cham, 2016. doi: 10.1007/978-3-319-45750-5.  Google Scholar

[22]

J. G. Wang and G. Liu, A point interpolation meshless method based on radial basis functions, Internat. J. Numerical Methods in Engineering, 54 (2002), 1623-1648.  doi: 10.1002/nme.489.  Google Scholar

Table 1.  The approximation quality with respect to the degree of polynomials ($ m $) and the number of basic functions ($ N $)
Example 1
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 4.24\times10^{-3} $ $ 3.34\times10^{-4} $ $ 8.61\times10^{-5} $ $ 3.39\times10^{-5} $
2 $ 2.34\times10^{-5} $ $ 7.92\times10^{-7} $ $ 1.30\times10^{-7} $ $ 3.70\times10^{-8} $
3 $ 1.44\times10^{-7} $ $ 2.09\times10^{-9} $ $ 2.17\times10^{-10} $ $ 4.55\times10^{-11} $
4 $ 1.10\times10^{-9} $ $ 1.27\times10^{-11} $ $ 1.24\times10^{-11} $ $ 9.41\times10^{-12} $
Example 2
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 7.30\times10^{-3} $ $ 1.64\times10^{-3} $ $ 8.83\times10^{-4} $ $ 6.24\times10^{-4} $
2 $ 4.21\times10^{-3} $ $ 1.52\times10^{-3} $ $ 8.80\times10^{-4} $ $ 6.23\times10^{-4} $
3 $ 2.23\times10^{-3} $ $ 7.87\times10^{-4} $ $ 4.86\times10^{-4} $ $ 3.54\times10^{-4} $
4 $ 2.13\times10^{-3} $ $ 7.85\times10^{-4} $ $ 4.75\times10^{-4} $ $ 3.52\times10^{-4} $
Example 3
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 1.0308 $ $ 0.7448 $ $ 0.5683 $ $ 0.2451 $
2 $ 0.8802 $ $ 0.5818 $ $ 0.1846 $ $ 9.83\times10^{-2} $
3 $ 0.8501 $ $ 0.3572 $ $ 9.60\times10^{-2} $ $ 2.03\times10^{-2} $
4 $ 0.8338 $ $ 0.2113 $ $ 3.67\times10^{-2} $ $ 7.41\times10^{-3} $
Example 4
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 2.07\times10^{-2} $ $ 1.71\times10^{-3} $ $ 4.36\times10^{-4} $ $ 1.72\times10^{-4} $
2 $ 1.40\times10^{-3} $ $ 4.99\times10^{-5} $ $ 8.26\times10^{-6} $ $ 2.37\times10^{-6} $
3 $ 7.52\times10^{-5} $ $ 1.15\times10^{-6} $ $ 1.21\times10^{-7} $ $ 2.49\times10^{-8} $
4 $ 3.28\times10^{-6} $ $ 2.15\times10^{-8} $ $ 1.44\times10^{-9} $ $ 2.16\times10^{-10} $
Example 1
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 4.24\times10^{-3} $ $ 3.34\times10^{-4} $ $ 8.61\times10^{-5} $ $ 3.39\times10^{-5} $
2 $ 2.34\times10^{-5} $ $ 7.92\times10^{-7} $ $ 1.30\times10^{-7} $ $ 3.70\times10^{-8} $
3 $ 1.44\times10^{-7} $ $ 2.09\times10^{-9} $ $ 2.17\times10^{-10} $ $ 4.55\times10^{-11} $
4 $ 1.10\times10^{-9} $ $ 1.27\times10^{-11} $ $ 1.24\times10^{-11} $ $ 9.41\times10^{-12} $
Example 2
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 7.30\times10^{-3} $ $ 1.64\times10^{-3} $ $ 8.83\times10^{-4} $ $ 6.24\times10^{-4} $
2 $ 4.21\times10^{-3} $ $ 1.52\times10^{-3} $ $ 8.80\times10^{-4} $ $ 6.23\times10^{-4} $
3 $ 2.23\times10^{-3} $ $ 7.87\times10^{-4} $ $ 4.86\times10^{-4} $ $ 3.54\times10^{-4} $
4 $ 2.13\times10^{-3} $ $ 7.85\times10^{-4} $ $ 4.75\times10^{-4} $ $ 3.52\times10^{-4} $
Example 3
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 1.0308 $ $ 0.7448 $ $ 0.5683 $ $ 0.2451 $
2 $ 0.8802 $ $ 0.5818 $ $ 0.1846 $ $ 9.83\times10^{-2} $
3 $ 0.8501 $ $ 0.3572 $ $ 9.60\times10^{-2} $ $ 2.03\times10^{-2} $
4 $ 0.8338 $ $ 0.2113 $ $ 3.67\times10^{-2} $ $ 7.41\times10^{-3} $
Example 4
$ \bf{m} $ $ \setminus $ $ \bf{N} $ $ 4 $ $ 8 $ $ 12 $ $ 16 $
1 $ 2.07\times10^{-2} $ $ 1.71\times10^{-3} $ $ 4.36\times10^{-4} $ $ 1.72\times10^{-4} $
2 $ 1.40\times10^{-3} $ $ 4.99\times10^{-5} $ $ 8.26\times10^{-6} $ $ 2.37\times10^{-6} $
3 $ 7.52\times10^{-5} $ $ 1.15\times10^{-6} $ $ 1.21\times10^{-7} $ $ 2.49\times10^{-8} $
4 $ 3.28\times10^{-6} $ $ 2.15\times10^{-8} $ $ 1.44\times10^{-9} $ $ 2.16\times10^{-10} $
Table 2.  The approximation quality with respect to the degree of polynomials ($m$) and the number of basic functions ($N$)
Example 3
$\bf{m}$ $\setminus$ $\bf{N}$ $32$ $64$ $128$ $256$
1 $4.40\times10^{-2}$ $5.62\times10^{-3}$ $7.07\times10^{-4}$ $8.78\times10^{-5}$
2 $6.20\times10^{-3}$ $4.13\times10^{-4}$ $2.54\times10^{-5}$ $1.57\times10^{-6}$
3 $9.25\times10^{-4}$ $2.64\times10^{-5}$ $8.08\times10^{-7}$ $2.24\times10^{-8}$
4 $9.20\times10^{-5}$ $1.55\times10^{-6}$ $2.23\times10^{-8}$ $5.54\times10^{-10}$
Example 3
$\bf{m}$ $\setminus$ $\bf{N}$ $32$ $64$ $128$ $256$
1 $4.40\times10^{-2}$ $5.62\times10^{-3}$ $7.07\times10^{-4}$ $8.78\times10^{-5}$
2 $6.20\times10^{-3}$ $4.13\times10^{-4}$ $2.54\times10^{-5}$ $1.57\times10^{-6}$
3 $9.25\times10^{-4}$ $2.64\times10^{-5}$ $8.08\times10^{-7}$ $2.24\times10^{-8}$
4 $9.20\times10^{-5}$ $1.55\times10^{-6}$ $2.23\times10^{-8}$ $5.54\times10^{-10}$
Table 3.  The comparison of the proposed method (FPP) and the piecewise linear FEM based on the approximation errors and the convergence rates
Example 1
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.8\times10^{-3} $ _ $ 2.3\times10^{-2} $ _
$ 16 $ $ 2.2\times10^{-4} $ 3.03 $ 4.9\times10^{-3} $ 2.23
$ 32 $ $ 2.8\times10^{-5} $ 2.97 $ 1.1\times10^{-3} $ 2.16
$ 64 $ $ 3.3\times10^{-6} $ 3.08 $ 2.8\times10^{-4} $ 1.97
$ 128 $ $ 4.5\times10^{-7} $ 2.87 $ 6.8\times10^{-5} $ 2.04
$ 256 $ $ 5.1\times10^{-8} $ 3.14 $ 1.7\times10^{-5} $ 2.00
Example 2
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 7.3\times10^{-3} $ _ $ 2.2\times10^{-2} $ _
$ 16 $ $ 1.6\times10^{-3} $ 2.19 $ 5.4\times10^{-3} $ 2.03
$ 32 $ $ 6.2\times10^{-4} $ 1.37 $ 1.7\times10^{-3} $ 1.67
$ 64 $ $ 3.0\times10^{-4} $ 1.05 $ 6.5\times10^{-4} $ 1.39
$ 128 $ $ 1.5\times10^{-4} $ 1.00 $ 2.9\times10^{-4} $ 1.16
$ 256 $ $ 8.6\times10^{-5} $ 8.03 $ 1.4\times10^{-4} $ 1.05
Example 3
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 0.9785 $ _ $ 1.0055 $ _
$ 16 $ $ 0.6878 $ 5.09 $ 0.8559 $ 2.32
$ 32 $ $ 0.2447 $ 1.49 $ 0.2764 $ 1.63
$ 64 $ $ 3.9\times10^{-2} $ 2.65 $ 7.1\times10^{-2} $ 1.96
$ 128 $ $ 5.4\times10^{-3} $ 2.85 $ 1.8\times10^{-2} $ 1.98
$ 256 $ $ 6.9\times10^{-4} $ 2.97 $ 4.4\times10^{-3} $ 2.03
Example 4
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.1\times10^{-2} $ _ $ 4.9\times10^{-2} $ _
$ 16 $ $ 1.7\times10^{-3} $ 2.69 $ 1.1\times10^{-2} $ 2.16
$ 32 $ $ 1.7\times10^{-4} $ 3.32 $ 2.6\times10^{-3} $ 2.08
$ 64 $ $ 1.9\times10^{-5} $ 3.16 $ 6.2\times10^{-4} $ 2.07
$ 128 $ $ 2.4\times10^{-6} $ 2.98 $ 1.5\times10^{-4} $ 2.05
$ 256 $ $ 3.1\times10^{-7} $ 2.95 $ 3.8\times10^{-5} $ 1.98
Example 1
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.8\times10^{-3} $ _ $ 2.3\times10^{-2} $ _
$ 16 $ $ 2.2\times10^{-4} $ 3.03 $ 4.9\times10^{-3} $ 2.23
$ 32 $ $ 2.8\times10^{-5} $ 2.97 $ 1.1\times10^{-3} $ 2.16
$ 64 $ $ 3.3\times10^{-6} $ 3.08 $ 2.8\times10^{-4} $ 1.97
$ 128 $ $ 4.5\times10^{-7} $ 2.87 $ 6.8\times10^{-5} $ 2.04
$ 256 $ $ 5.1\times10^{-8} $ 3.14 $ 1.7\times10^{-5} $ 2.00
Example 2
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 7.3\times10^{-3} $ _ $ 2.2\times10^{-2} $ _
$ 16 $ $ 1.6\times10^{-3} $ 2.19 $ 5.4\times10^{-3} $ 2.03
$ 32 $ $ 6.2\times10^{-4} $ 1.37 $ 1.7\times10^{-3} $ 1.67
$ 64 $ $ 3.0\times10^{-4} $ 1.05 $ 6.5\times10^{-4} $ 1.39
$ 128 $ $ 1.5\times10^{-4} $ 1.00 $ 2.9\times10^{-4} $ 1.16
$ 256 $ $ 8.6\times10^{-5} $ 8.03 $ 1.4\times10^{-4} $ 1.05
Example 3
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 0.9785 $ _ $ 1.0055 $ _
$ 16 $ $ 0.6878 $ 5.09 $ 0.8559 $ 2.32
$ 32 $ $ 0.2447 $ 1.49 $ 0.2764 $ 1.63
$ 64 $ $ 3.9\times10^{-2} $ 2.65 $ 7.1\times10^{-2} $ 1.96
$ 128 $ $ 5.4\times10^{-3} $ 2.85 $ 1.8\times10^{-2} $ 1.98
$ 256 $ $ 6.9\times10^{-4} $ 2.97 $ 4.4\times10^{-3} $ 2.03
Example 4
# N FPP FEM
Error Rate Error Rate
$ 8 $ $ 1.1\times10^{-2} $ _ $ 4.9\times10^{-2} $ _
$ 16 $ $ 1.7\times10^{-3} $ 2.69 $ 1.1\times10^{-2} $ 2.16
$ 32 $ $ 1.7\times10^{-4} $ 3.32 $ 2.6\times10^{-3} $ 2.08
$ 64 $ $ 1.9\times10^{-5} $ 3.16 $ 6.2\times10^{-4} $ 2.07
$ 128 $ $ 2.4\times10^{-6} $ 2.98 $ 1.5\times10^{-4} $ 2.05
$ 256 $ $ 3.1\times10^{-7} $ 2.95 $ 3.8\times10^{-5} $ 1.98
[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[20]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (150)
  • HTML views (96)
  • Cited by (1)

Other articles
by authors

[Back to Top]