February  2020, 25(2): 733-747. doi: 10.3934/dcdsb.2019264

On the approximation of fixed points for non-self mappings on metric spaces

Babeş-Bolyai University, Department of Mathematics, 400084 Cluj-Napoca, Romania

* Corresponding author: Radu Precup

Dedicated to Professor Juan J. Nieto on the occasion of his 60th birthday

Received  November 2018 Revised  January 2019 Published  February 2020 Early access  November 2019

Starting from some classical results of R. Conti, A. Haimovici and K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we present several theorems of approximation of the fixed points for non-self mappings on metric spaces. Both metric and topological conditions are involved. Some of the results are generalized to the multi-valued case. An application is given to a class of implicit first-order differential systems leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.

Citation: Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264
References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.

[2]

L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26. 

[3]

R. Conti, Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97. 

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76.

[6]

K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204. 

[7]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76. 

[8]

W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316. doi: 10.1155/S1687182004406081.

[9]

W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. doi: 10.1007/978-3-319-10927-5.

[10]

D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.

[11]

A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.

[12]

A. PetruşelI. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.  doi: 10.1007/s11228-014-0291-6.

[13]

R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89.

[14]

R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208. 

[15]

R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9986-3.

[16]

D. ReemS. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.  doi: 10.1007/s11784-006-0011-4.

[17]

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.  doi: 10.4153/CMB-1971-024-9.

[18]

S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.  doi: 10.1016/0022-247X(73)90220-5.

[19]

S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307. 

[20]

S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. doi: 10.1007/978-1-4614-9533-8.

[21]

I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172. 

[22]

I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.  doi: 10.18514/MMN.2017.1186.

[23]

M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398. 

show all references

Dedicated to Professor Juan J. Nieto on the occasion of his 60th birthday

References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.

[2]

L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26. 

[3]

R. Conti, Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97. 

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.

[5]

A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76.

[6]

K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204. 

[7]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76. 

[8]

W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316. doi: 10.1155/S1687182004406081.

[9]

W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. doi: 10.1007/978-3-319-10927-5.

[10]

D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.

[11]

A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.

[12]

A. PetruşelI. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.  doi: 10.1007/s11228-014-0291-6.

[13]

R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89.

[14]

R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208. 

[15]

R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9986-3.

[16]

D. ReemS. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.  doi: 10.1007/s11784-006-0011-4.

[17]

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.  doi: 10.4153/CMB-1971-024-9.

[18]

S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.  doi: 10.1016/0022-247X(73)90220-5.

[19]

S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307. 

[20]

S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. doi: 10.1007/978-1-4614-9533-8.

[21]

I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172. 

[22]

I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.  doi: 10.18514/MMN.2017.1186.

[23]

M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398. 

[1]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[2]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[3]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[4]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks and Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[5]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[6]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[7]

John Banks. Topological mapping properties defined by digraphs. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[8]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[9]

Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959

[10]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[11]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[12]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[13]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[14]

Ouafa Belguidoum, Hassina Grar. An improved projection algorithm for variational inequality problem with multivalued mapping. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022002

[15]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[16]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[17]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[18]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[19]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[20]

Peter Giesl. On a matrix-valued PDE characterizing a contraction metric for a periodic orbit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4839-4865. doi: 10.3934/dcdsb.2020315

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (340)
  • HTML views (152)
  • Cited by (0)

[Back to Top]