-
Previous Article
Bifurcation of relative equilibria generated by a circular vortex path in a circular domain
- DCDS-B Home
- This Issue
-
Next Article
Boundary value problem: Weak solutions induced by fuzzy partitions
On the approximation of fixed points for non-self mappings on metric spaces
Babeş-Bolyai University, Department of Mathematics, 400084 Cluj-Napoca, Romania |
Starting from some classical results of R. Conti, A. Haimovici and K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we present several theorems of approximation of the fixed points for non-self mappings on metric spaces. Both metric and topological conditions are involved. Some of the results are generalized to the multi-valued case. An application is given to a class of implicit first-order differential systems leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.
References:
[1] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990. |
[2] |
L. B. Ćirić,
Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.
|
[3] |
R. Conti,
Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97.
|
[4] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[5] |
A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76. |
[6] |
K. Iseki,
A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204.
|
[7] |
R. Kannan,
Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
|
[8] |
W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316.
doi: 10.1155/S1687182004406081. |
[9] |
W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
doi: 10.1007/978-3-319-10927-5. |
[10] |
D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001. |
[11] |
A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002. |
[12] |
A. Petruşel, I. A. Rus and M.-A. Şerban,
Fixed points, fixed sets and iterated multifunction
systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.
doi: 10.1007/s11228-014-0291-6. |
[13] |
R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89. |
[14] |
R. Precup,
Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208.
|
[15] |
R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/978-94-015-9986-3. |
[16] |
D. Reem, S. Reich and A. J. Zaslavski,
Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.
doi: 10.1007/s11784-006-0011-4. |
[17] |
S. Reich,
Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.
doi: 10.4153/CMB-1971-024-9. |
[18] |
S. Reich,
Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.
doi: 10.1016/0022-247X(73)90220-5. |
[19] |
S. Reich and A. J. Zaslavski,
A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307.
|
[20] |
S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9533-8. |
[21] |
I. A. Rus,
Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172.
|
[22] |
I. A. Rus and M.-A. Şerban,
Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.
doi: 10.18514/MMN.2017.1186. |
[23] |
M.-A. Şerban,
Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398.
|
show all references
References:
[1] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990. |
[2] |
L. B. Ćirić,
Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.
|
[3] |
R. Conti,
Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97.
|
[4] |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7. |
[5] |
A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76. |
[6] |
K. Iseki,
A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204.
|
[7] |
R. Kannan,
Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
|
[8] |
W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316.
doi: 10.1155/S1687182004406081. |
[9] |
W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014.
doi: 10.1007/978-3-319-10927-5. |
[10] |
D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001. |
[11] |
A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002. |
[12] |
A. Petruşel, I. A. Rus and M.-A. Şerban,
Fixed points, fixed sets and iterated multifunction
systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.
doi: 10.1007/s11228-014-0291-6. |
[13] |
R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89. |
[14] |
R. Precup,
Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208.
|
[15] |
R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/978-94-015-9986-3. |
[16] |
D. Reem, S. Reich and A. J. Zaslavski,
Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.
doi: 10.1007/s11784-006-0011-4. |
[17] |
S. Reich,
Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.
doi: 10.4153/CMB-1971-024-9. |
[18] |
S. Reich,
Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.
doi: 10.1016/0022-247X(73)90220-5. |
[19] |
S. Reich and A. J. Zaslavski,
A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307.
|
[20] |
S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014.
doi: 10.1007/978-1-4614-9533-8. |
[21] |
I. A. Rus,
Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172.
|
[22] |
I. A. Rus and M.-A. Şerban,
Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.
doi: 10.18514/MMN.2017.1186. |
[23] |
M.-A. Şerban,
Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398.
|
[1] |
Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315 |
[2] |
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 |
[3] |
Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165 |
[4] |
Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks & Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267 |
[5] |
Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055 |
[6] |
Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225 |
[7] |
John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83 |
[8] |
Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014 |
[9] |
Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959 |
[10] |
Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661 |
[11] |
Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011 |
[12] |
Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179 |
[13] |
Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100 |
[14] |
Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257 |
[15] |
Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179 |
[16] |
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237 |
[17] |
Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253 |
[18] |
Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012 |
[19] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[20] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]