February  2020, 25(2): 733-747. doi: 10.3934/dcdsb.2019264

On the approximation of fixed points for non-self mappings on metric spaces

Babeş-Bolyai University, Department of Mathematics, 400084 Cluj-Napoca, Romania

* Corresponding author: Radu Precup

Dedicated to Professor Juan J. Nieto on the occasion of his 60th birthday

Received  November 2018 Revised  January 2019 Published  November 2019

Starting from some classical results of R. Conti, A. Haimovici and K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we present several theorems of approximation of the fixed points for non-self mappings on metric spaces. Both metric and topological conditions are involved. Some of the results are generalized to the multi-valued case. An application is given to a class of implicit first-order differential systems leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.

Citation: Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264
References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.  Google Scholar

[2]

L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.   Google Scholar

[3]

R. Conti, Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97.   Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76.  Google Scholar

[6]

K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204.   Google Scholar

[7]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.   Google Scholar

[8]

W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316. doi: 10.1155/S1687182004406081.  Google Scholar

[9]

W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. doi: 10.1007/978-3-319-10927-5.  Google Scholar

[10]

D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.  Google Scholar

[11]

A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.  Google Scholar

[12]

A. PetruşelI. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.  doi: 10.1007/s11228-014-0291-6.  Google Scholar

[13]

R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89.  Google Scholar

[14]

R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208.   Google Scholar

[15]

R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9986-3.  Google Scholar

[16]

D. ReemS. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.  doi: 10.1007/s11784-006-0011-4.  Google Scholar

[17]

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.  doi: 10.4153/CMB-1971-024-9.  Google Scholar

[18]

S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.  doi: 10.1016/0022-247X(73)90220-5.  Google Scholar

[19]

S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307.   Google Scholar

[20]

S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. doi: 10.1007/978-1-4614-9533-8.  Google Scholar

[21]

I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172.   Google Scholar

[22]

I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.  doi: 10.18514/MMN.2017.1186.  Google Scholar

[23]

M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398.   Google Scholar

show all references

References:
[1]

J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.  Google Scholar

[2]

L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.   Google Scholar

[3]

R. Conti, Un'osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97.   Google Scholar

[4]

K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.  Google Scholar

[5]

A. Haimovici, Un théorèe d'existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Şti. Univ. "Al. I. Cuza" Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76.  Google Scholar

[6]

K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204.   Google Scholar

[7]

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.   Google Scholar

[8]

W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316. doi: 10.1155/S1687182004406081.  Google Scholar

[9]

W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. doi: 10.1007/978-3-319-10927-5.  Google Scholar

[10]

D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.  Google Scholar

[11]

A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.  Google Scholar

[12]

A. PetruşelI. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.  doi: 10.1007/s11228-014-0291-6.  Google Scholar

[13]

R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89.  Google Scholar

[14]

R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208.   Google Scholar

[15]

R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9986-3.  Google Scholar

[16]

D. ReemS. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.  doi: 10.1007/s11784-006-0011-4.  Google Scholar

[17]

S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.  doi: 10.4153/CMB-1971-024-9.  Google Scholar

[18]

S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.  doi: 10.1016/0022-247X(73)90220-5.  Google Scholar

[19]

S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307.   Google Scholar

[20]

S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. doi: 10.1007/978-1-4614-9533-8.  Google Scholar

[21]

I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172.   Google Scholar

[22]

I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.  doi: 10.18514/MMN.2017.1186.  Google Scholar

[23]

M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398.   Google Scholar

[1]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[2]

Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure & Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541

[3]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[4]

Jean-Philippe Cointet, David Chavalarias. Multi-level science mapping with asymmetrical paradigmatic proximity. Networks & Heterogeneous Media, 2008, 3 (2) : 267-276. doi: 10.3934/nhm.2008.3.267

[5]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[6]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[7]

John Banks. Topological mapping properties defined by digraphs. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 83-92. doi: 10.3934/dcds.1999.5.83

[8]

Mike Boyle, Sompong Chuysurichay. The mapping class group of a shift of finite type. Journal of Modern Dynamics, 2018, 13: 115-145. doi: 10.3934/jmd.2018014

[9]

Fuzhong Cong, Hongtian Li. Quasi-effective stability for a nearly integrable volume-preserving mapping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1959-1970. doi: 10.3934/dcdsb.2015.20.1959

[10]

Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661

[11]

Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011

[12]

Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179

[13]

Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100

[14]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[15]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[16]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[17]

Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253

[18]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[19]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[20]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (77)
  • HTML views (49)
  • Cited by (0)

[Back to Top]