We study the passive particle transport generated by a circular vortex path in a 2D ideal flow confined in a circular domain. Taking the strength and angular velocity of the vortex path as main parameters, the bifurcation scheme of relative equilibria is identified. For a perturbed path, an infinite number of orbits around the centers are persistent, giving rise to periodic solutions with zero winding number.
Citation: |
[1] |
H. Aref, Stirring by chaotic advection, J. Fluid Mech., 143 (1984), 1-21.
doi: 10.1017/S0022112084001233.![]() ![]() ![]() |
[2] |
H. Aref, J. Roenby, M. A. Stremler and L. Tophøj, Nonlinear excursions of particles in ideal 2D flows, Phys. D, 240 (2011), 199-207.
doi: 10.1016/j.physd.2010.08.007.![]() ![]() ![]() |
[3] |
A. Boscaggin and P. J. Torres, Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Phys. D, 261 (2013), 81-84.
doi: 10.1016/j.physd.2013.07.004.![]() ![]() ![]() |
[4] |
T. Carletti and A. Margheri, Measuring the mixing efficiency in a simple model of stirring: Some analytical results and a quantitative study via frequency map analysis, J. Phys. A, 39 (2006), 299-312.
doi: 10.1088/0305-4470/39/2/002.![]() ![]() ![]() |
[5] |
A. Fonda, M. Sabatini and F. Zanolin, Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
![]() ![]() |
[6] |
P. Franzese and L. Zannetti, Advection by a point vortex in closed domains, European J. Mech. B Fluids, 12 (1993), 43-67.
![]() ![]() |
[7] |
R. Ortega, V. Ortega and P. J. Torres, Point-vortex stability under the influence of an external periodic flow, Nonlinearity, 31 (2018), 1849-1867.
doi: 10.1088/1361-6544/aaa5e2.![]() ![]() ![]() |
[8] |
P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992.
doi: 10.1017/CBO9780511624063.![]() ![]() ![]() |
[9] |
P. J. Torres, Mathematical Models With Singularities, Atlantis Briefs in Differential Equations, 1, Atlantis Press, Paris, 2015.
doi: 10.2991/978-94-6239-106-2.![]() ![]() ![]() |
[10] |
S. Wiggins and J. M. Ottino, Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970.
doi: 10.1098/rsta.2003.1356.![]() ![]() ![]() |
Phase portrait of system (3) depending on the parameters according to Theorem 2.1
Bifurcation diagram of the phase-portrait of system (3) on