
-
Previous Article
On an optimal control problem of time-fractional advection-diffusion equation
- DCDS-B Home
- This Issue
-
Next Article
On the approximation of fixed points for non-self mappings on metric spaces
Bifurcation of relative equilibria generated by a circular vortex path in a circular domain
1. | Departament d'Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, 17003 Girona, Spain |
2. | Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain |
We study the passive particle transport generated by a circular vortex path in a 2D ideal flow confined in a circular domain. Taking the strength and angular velocity of the vortex path as main parameters, the bifurcation scheme of relative equilibria is identified. For a perturbed path, an infinite number of orbits around the centers are persistent, giving rise to periodic solutions with zero winding number.
References:
[1] |
H. Aref,
Stirring by chaotic advection, J. Fluid Mech., 143 (1984), 1-21.
doi: 10.1017/S0022112084001233. |
[2] |
H. Aref, J. Roenby, M. A. Stremler and L. Tophøj,
Nonlinear excursions of particles in ideal 2D flows, Phys. D, 240 (2011), 199-207.
doi: 10.1016/j.physd.2010.08.007. |
[3] |
A. Boscaggin and P. J. Torres,
Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Phys. D, 261 (2013), 81-84.
doi: 10.1016/j.physd.2013.07.004. |
[4] |
T. Carletti and A. Margheri,
Measuring the mixing efficiency in a simple model of stirring: Some analytical results and a quantitative study via frequency map analysis, J. Phys. A, 39 (2006), 299-312.
doi: 10.1088/0305-4470/39/2/002. |
[5] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[6] |
P. Franzese and L. Zannetti,
Advection by a point vortex in closed domains, European J. Mech. B Fluids, 12 (1993), 43-67.
|
[7] |
R. Ortega, V. Ortega and P. J. Torres,
Point-vortex stability under the influence of an external periodic flow, Nonlinearity, 31 (2018), 1849-1867.
doi: 10.1088/1361-6544/aaa5e2. |
[8] |
P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992.
doi: 10.1017/CBO9780511624063.![]() ![]() |
[9] |
P. J. Torres, Mathematical Models With Singularities, Atlantis Briefs in Differential Equations, 1, Atlantis Press, Paris, 2015.
doi: 10.2991/978-94-6239-106-2.![]() ![]() |
[10] |
S. Wiggins and J. M. Ottino,
Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970.
doi: 10.1098/rsta.2003.1356. |
show all references
References:
[1] |
H. Aref,
Stirring by chaotic advection, J. Fluid Mech., 143 (1984), 1-21.
doi: 10.1017/S0022112084001233. |
[2] |
H. Aref, J. Roenby, M. A. Stremler and L. Tophøj,
Nonlinear excursions of particles in ideal 2D flows, Phys. D, 240 (2011), 199-207.
doi: 10.1016/j.physd.2010.08.007. |
[3] |
A. Boscaggin and P. J. Torres,
Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Phys. D, 261 (2013), 81-84.
doi: 10.1016/j.physd.2013.07.004. |
[4] |
T. Carletti and A. Margheri,
Measuring the mixing efficiency in a simple model of stirring: Some analytical results and a quantitative study via frequency map analysis, J. Phys. A, 39 (2006), 299-312.
doi: 10.1088/0305-4470/39/2/002. |
[5] |
A. Fonda, M. Sabatini and F. Zanolin,
Periodic solutions of perturbed Hamiltonian systems in the plane by the use of the Poincaré-Birkhoff Theorem, Topol. Methods Nonlinear Anal., 40 (2012), 29-52.
|
[6] |
P. Franzese and L. Zannetti,
Advection by a point vortex in closed domains, European J. Mech. B Fluids, 12 (1993), 43-67.
|
[7] |
R. Ortega, V. Ortega and P. J. Torres,
Point-vortex stability under the influence of an external periodic flow, Nonlinearity, 31 (2018), 1849-1867.
doi: 10.1088/1361-6544/aaa5e2. |
[8] |
P. G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, New York, 1992.
doi: 10.1017/CBO9780511624063.![]() ![]() |
[9] |
P. J. Torres, Mathematical Models With Singularities, Atlantis Briefs in Differential Equations, 1, Atlantis Press, Paris, 2015.
doi: 10.2991/978-94-6239-106-2.![]() ![]() |
[10] |
S. Wiggins and J. M. Ottino,
Foundations of chaotic mixing, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), 937-970.
doi: 10.1098/rsta.2003.1356. |


[1] |
Yves Coudière, Anđela Davidović, Clair Poignard. Modified bidomain model with passive periodic heterogeneities. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-. doi: 10.3934/dcdss.2020126 |
[2] |
Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397 |
[3] |
Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218 |
[4] |
Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240 |
[5] |
Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237 |
[6] |
Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255 |
[7] |
Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080 |
[8] |
Peter Giesl, James McMichen. Determination of the basin of attraction of a periodic orbit in two dimensions using meshless collocation. Journal of Computational Dynamics, 2016, 3 (2) : 191-210. doi: 10.3934/jcd.2016010 |
[9] |
Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315 |
[10] |
Xueting Tian, Shirou Wang, Xiaodong Wang. Intermediate Lyapunov exponents for systems with periodic orbit gluing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1019-1032. doi: 10.3934/dcds.2019042 |
[11] |
Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032 |
[12] |
Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355 |
[13] |
Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493 |
[14] |
Christian Bonatti, Lorenzo J. Díaz, Todd Fisher. Super-exponential growth of the number of periodic orbits inside homoclinic classes. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 589-604. doi: 10.3934/dcds.2008.20.589 |
[15] |
Fucai Li, Yanmin Mu. Low Mach number limit for the compressible magnetohydrodynamic equations in a periodic domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1669-1705. doi: 10.3934/dcds.2018069 |
[16] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[17] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[18] |
Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021 |
[19] |
Mark Lewis, Daniel Offin, Pietro-Luciano Buono, Mitchell Kovacic. Instability of the periodic hip-hop orbit in the $2N$-body problem with equal masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1137-1155. doi: 10.3934/dcds.2013.33.1137 |
[20] |
M. Ollé, J.R. Pacha, J. Villanueva. Dynamics close to a non semi-simple 1:-1 resonant periodic orbit. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 799-816. doi: 10.3934/dcdsb.2005.5.799 |
2018 Impact Factor: 1.008
Tools
Article outline
Figures and Tables
[Back to Top]