-
Previous Article
Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation of relative equilibria generated by a circular vortex path in a circular domain
On an optimal control problem of time-fractional advection-diffusion equation
China university of Geosciences, Wuhan, Hubei province, China |
We consider an optimal control problem of an advection-diffusion equation with Caputo time-fractional derivative. By convex duality method we obtain as optimality condition a forward-backward coupled system. We then prove the existence of a solution to this coupled system using Schauder fixed point theorem. The uniqueness of the solution is also established under certain monotonicity condition on the cost functional.
References:
[1] |
Y. Achdou, M. Bardi and M. Cirant,
Mean field games models of segregation, Math. Models Methods Appl. Sci., 27 (2017), 75-113.
doi: 10.1142/S0218202517400036. |
[2] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[3] |
M. Annunziato, A. Borzì, M. Magdziarz and A. Weron,
A fractional Fokker-Planck control framework for subdiffusion processes, Optimal Control Appl. Methods, 37 (2016), 290-304.
doi: 10.1002/oca.2168. |
[4] |
H. Antil, E. Otárola and A. J. Salgado,
A space-time fractional optimal control problem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295-1328.
doi: 10.1137/15M1014991. |
[5] |
J.-D. Benamou and Y. Brenier,
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[6] |
J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, in Active Particles, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 141–171.
doi: 10.1007/978-3-319-49996-3_4. |
[7] |
J.-D. Benamou, G. Carlier, S. D. Marino and L. Nenna,
An entropy minimization approach to second-order variational mean-field games, Math. Models Methods Appl. Sci., 29 (2019), 1553-1583.
doi: 10.1142/S0218202519500283. |
[8] |
J.-P. Bouchaud and A. Georges,
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[9] |
M. Burger, M. D. Francesco, P. A. Markowich and M.-T. Wolfram,
Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311-1333.
doi: 10.3934/dcdsb.2014.19.1311. |
[10] |
F. Camilli, R. D. Maio and E. Iacomini,
A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.
doi: 10.1016/j.jmaa.2019.04.069. |
[11] |
F. Camilli and R. D. Maio,
A time-fractional mean field game, Adv. Differential Equations, 24 (2019), 531-554.
|
[12] |
P. Cardaliaguet, Notes on Mean Field Games from P.L. Lions' lectures at Collége de France, 2010. Google Scholar |
[13] |
P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, in Analysis and Geometry in Control Theory and its Applications, Springer INdAM Ser., Spriner, Cham, 11 (2015), 111–158.
doi: 10.1007/978-3-319-06917-3_5. |
[14] |
P. Cardaliaguet, P. J. Graber, A. Porretta and D. Tonon,
Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1287-1317.
doi: 10.1007/s00030-015-0323-4. |
[15] |
A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga and E. Valdinoci,
On stationary fractional mean field games, J. Math. Pures Appl., 122 (2019), 1-22.
doi: 10.1016/j.matpur.2017.10.013. |
[16] |
M. Cirant and A. Goffi,
On the existence and uniqueness of solutions to time-dependent fractional MFG, SIAM J. Math. Anal., 51 (2019), 913-954.
doi: 10.1137/18M1216420. |
[17] |
D. A. Gomes and J. Saúde,
Mean field games models——A brief survey, Dyn. Games Appl., 4 (2014), 110-154.
doi: 10.1007/s13235-013-0099-2. |
[18] |
Y. Giga and T. Namba,
Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.
doi: 10.1080/03605302.2017.1324880. |
[19] |
O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer, Berlin, 2011,205–266.
doi: 10.1007/978-3-642-14660-2_3. |
[20] |
M. Hahn, K. Kobayashi and S. Umarov,
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab., 25 (2012), 262-279.
doi: 10.1007/s10959-010-0289-4. |
[21] |
G. H. Hardy and J. E. Littlewood,
Some properties of fractional integrals. I., Math. Z., 27 (1928), 565-606.
doi: 10.1007/BF01171116. |
[22] |
M. E. Hernández-Hernández and V. N. Kolokoltsov,
Probabilistic solutions to nonlinear fractional differential equations of generalized Caputo and Riemann–Liouville type, Stochastics, 90 (2018), 224-255.
doi: 10.1080/17442508.2017.1334059. |
[23] |
M. Huang, P. E. Caines and R. P. Malhame,
Large-population cost-coupled LQG problems with non uniform agents: Individual-mass behaviour and decentralized ε-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[24] |
J. Kemppainen and R. Zacher,
Long-time behaviour of non-local in time Fokker-Planck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.
doi: 10.1142/S0218202519500076. |
[25] |
V. Kolokoltsov and M. Veretennikova, A fractional Hamilton-Jacobi Bellman equation for scaled limits of controlled continuous time random walks, Commun. Appl. Ind. Math., 6 (2014), e-484, 18 pp.
doi: 10.1685/journal.caim.484. |
[26] |
V. Kolokoltsov and M. Veretennikova,
Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations, Fract. Differ. Calc., 4 (2014), 1-30.
doi: 10.7153/fdc-04-01. |
[27] |
A. Kubica and M. Yamamoto,
Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311.
doi: 10.1515/fca-2018-0018. |
[28] |
J.-M. Lasry and P.-L. Lions,
Jeux à champ moyen. Ⅱ – Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[29] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[30] |
L. Li and J. Liu,
Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.
doi: 10.1137/17M1145549. |
[31] |
L. Li, J.-G. Liu and L. Wang,
Cauchy problems for Keller–Segel type time–space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.
doi: 10.1016/j.jde.2018.03.025. |
[32] |
A. R. Mészáros and F. J. Silva,
A variational approach to second order mean field games with density constraints: The stationary case, J. Math. Pures Appl., 104 (2015), 1135-1159.
doi: 10.1016/j.matpur.2015.07.008. |
[33] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[34] |
S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. |
[35] |
Q. Tang and F. Camilli, Variational time-fractional mean field games, Dynamic Games and Applications, Springer US, 2019, 1–16.
doi: 10.1007/s13235-019-00330-2. |
[36] |
E. Topp and M. Yangari,
Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.
doi: 10.1016/j.jde.2017.02.024. |
[37] |
R. Zacher,
Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.
doi: 10.1016/j.jmaa.2008.06.054. |
[38] |
R. Zacher,
A De Giorgi–Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99-146.
doi: 10.1007/s00208-012-0834-9. |
show all references
References:
[1] |
Y. Achdou, M. Bardi and M. Cirant,
Mean field games models of segregation, Math. Models Methods Appl. Sci., 27 (2017), 75-113.
doi: 10.1142/S0218202517400036. |
[2] |
M. Allen, L. Caffarelli and A. Vasseur,
A parabolic problem with a fractional time derivative, Arch. Ration. Mech. Anal., 221 (2016), 603-630.
doi: 10.1007/s00205-016-0969-z. |
[3] |
M. Annunziato, A. Borzì, M. Magdziarz and A. Weron,
A fractional Fokker-Planck control framework for subdiffusion processes, Optimal Control Appl. Methods, 37 (2016), 290-304.
doi: 10.1002/oca.2168. |
[4] |
H. Antil, E. Otárola and A. J. Salgado,
A space-time fractional optimal control problem: Analysis and discretization, SIAM J. Control Optim., 54 (2016), 1295-1328.
doi: 10.1137/15M1014991. |
[5] |
J.-D. Benamou and Y. Brenier,
A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002. |
[6] |
J.-D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, in Active Particles, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham, 1 (2017), 141–171.
doi: 10.1007/978-3-319-49996-3_4. |
[7] |
J.-D. Benamou, G. Carlier, S. D. Marino and L. Nenna,
An entropy minimization approach to second-order variational mean-field games, Math. Models Methods Appl. Sci., 29 (2019), 1553-1583.
doi: 10.1142/S0218202519500283. |
[8] |
J.-P. Bouchaud and A. Georges,
Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127-293.
doi: 10.1016/0370-1573(90)90099-N. |
[9] |
M. Burger, M. D. Francesco, P. A. Markowich and M.-T. Wolfram,
Mean field games with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1311-1333.
doi: 10.3934/dcdsb.2014.19.1311. |
[10] |
F. Camilli, R. D. Maio and E. Iacomini,
A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative, J. Math. Anal. Appl., 477 (2019), 1019-1032.
doi: 10.1016/j.jmaa.2019.04.069. |
[11] |
F. Camilli and R. D. Maio,
A time-fractional mean field game, Adv. Differential Equations, 24 (2019), 531-554.
|
[12] |
P. Cardaliaguet, Notes on Mean Field Games from P.L. Lions' lectures at Collége de France, 2010. Google Scholar |
[13] |
P. Cardaliaguet, Weak solutions for first order mean field games with local coupling, in Analysis and Geometry in Control Theory and its Applications, Springer INdAM Ser., Spriner, Cham, 11 (2015), 111–158.
doi: 10.1007/978-3-319-06917-3_5. |
[14] |
P. Cardaliaguet, P. J. Graber, A. Porretta and D. Tonon,
Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1287-1317.
doi: 10.1007/s00030-015-0323-4. |
[15] |
A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga and E. Valdinoci,
On stationary fractional mean field games, J. Math. Pures Appl., 122 (2019), 1-22.
doi: 10.1016/j.matpur.2017.10.013. |
[16] |
M. Cirant and A. Goffi,
On the existence and uniqueness of solutions to time-dependent fractional MFG, SIAM J. Math. Anal., 51 (2019), 913-954.
doi: 10.1137/18M1216420. |
[17] |
D. A. Gomes and J. Saúde,
Mean field games models——A brief survey, Dyn. Games Appl., 4 (2014), 110-154.
doi: 10.1007/s13235-013-0099-2. |
[18] |
Y. Giga and T. Namba,
Well-posedness of Hamilton-Jacobi equations with Caputo's time fractional derivative, Comm. Partial Differential Equations, 42 (2017), 1088-1120.
doi: 10.1080/03605302.2017.1324880. |
[19] |
O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer, Berlin, 2011,205–266.
doi: 10.1007/978-3-642-14660-2_3. |
[20] |
M. Hahn, K. Kobayashi and S. Umarov,
SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab., 25 (2012), 262-279.
doi: 10.1007/s10959-010-0289-4. |
[21] |
G. H. Hardy and J. E. Littlewood,
Some properties of fractional integrals. I., Math. Z., 27 (1928), 565-606.
doi: 10.1007/BF01171116. |
[22] |
M. E. Hernández-Hernández and V. N. Kolokoltsov,
Probabilistic solutions to nonlinear fractional differential equations of generalized Caputo and Riemann–Liouville type, Stochastics, 90 (2018), 224-255.
doi: 10.1080/17442508.2017.1334059. |
[23] |
M. Huang, P. E. Caines and R. P. Malhame,
Large-population cost-coupled LQG problems with non uniform agents: Individual-mass behaviour and decentralized ε-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[24] |
J. Kemppainen and R. Zacher,
Long-time behaviour of non-local in time Fokker-Planck equations via the entropy method, Math. Models Methods Appl. Sci., 29 (2019), 209-235.
doi: 10.1142/S0218202519500076. |
[25] |
V. Kolokoltsov and M. Veretennikova, A fractional Hamilton-Jacobi Bellman equation for scaled limits of controlled continuous time random walks, Commun. Appl. Ind. Math., 6 (2014), e-484, 18 pp.
doi: 10.1685/journal.caim.484. |
[26] |
V. Kolokoltsov and M. Veretennikova,
Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations, Fract. Differ. Calc., 4 (2014), 1-30.
doi: 10.7153/fdc-04-01. |
[27] |
A. Kubica and M. Yamamoto,
Initial-boundary value problems for fractional diffusion equations with time-dependent coefficients, Fract. Calc. Appl. Anal., 21 (2018), 276-311.
doi: 10.1515/fca-2018-0018. |
[28] |
J.-M. Lasry and P.-L. Lions,
Jeux à champ moyen. Ⅱ – Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[29] |
J.-M. Lasry and P.-L. Lions,
Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[30] |
L. Li and J. Liu,
Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50 (2018), 3963-3995.
doi: 10.1137/17M1145549. |
[31] |
L. Li, J.-G. Liu and L. Wang,
Cauchy problems for Keller–Segel type time–space fractional diffusion equation, J. Differential Equations, 265 (2018), 1044-1096.
doi: 10.1016/j.jde.2018.03.025. |
[32] |
A. R. Mészáros and F. J. Silva,
A variational approach to second order mean field games with density constraints: The stationary case, J. Math. Pures Appl., 104 (2015), 1135-1159.
doi: 10.1016/j.matpur.2015.07.008. |
[33] |
R. Metzler and J. Klafter,
The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3. |
[34] |
S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. |
[35] |
Q. Tang and F. Camilli, Variational time-fractional mean field games, Dynamic Games and Applications, Springer US, 2019, 1–16.
doi: 10.1007/s13235-019-00330-2. |
[36] |
E. Topp and M. Yangari,
Existence and uniqueness for parabolic problems with Caputo time derivative, J. Differential Equations, 262 (2017), 6018-6046.
doi: 10.1016/j.jde.2017.02.024. |
[37] |
R. Zacher,
Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.
doi: 10.1016/j.jmaa.2008.06.054. |
[38] |
R. Zacher,
A De Giorgi–Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99-146.
doi: 10.1007/s00208-012-0834-9. |
[1] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[2] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[3] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[4] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[5] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[6] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[7] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[11] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[12] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[13] |
Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213 |
[14] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[15] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[16] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[17] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[18] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[19] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[20] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]