May  2020, 25(5): 1775-1789. doi: 10.3934/dcdsb.2020002

The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem

School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550001, China

* Corresponding author: Yidu Yang

Received  May 2018 Revised  August 2019 Published  December 2019

Fund Project: This work is supported by the National Natural Science Foundation of China (Grant No.11761022) and Science and Technology Foundation of Guizhou Province of China (Grant No. LH [2014] 7061).

In this paper, for the biharmonic eigenvalue problem with clamped boundary condition in $ \mathbb{R}^{2} $, we study the two-grid discretization based on shifted-inverse iteration of $ C^0 $IPG method. With our scheme, the solution of a biharmonic eigenvalue problem on a fine mesh $ \pi_h $ can be reduced to the solution of the eigenvalue problem on a coarser mesh $ \pi_H $ and the solution of a linear algebraic system on the fine mesh $ \pi_h $. We prove that the resulting solution still maintains an asymptotically optimal accuracy when $ h\geq O(H^3) $. In addition, we also discuss the multigrid discretization and the adaptive $ C^0 $IPG algorithm based on Rayleigh quotient iteration. Numerical experiments are provided to validate the theoretical analysis.

Citation: Hao Li, Hai Bi, Yidu Yang. The two-grid and multigrid discretizations of the $ C^0 $IPG method for biharmonic eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1775-1789. doi: 10.3934/dcdsb.2020002
References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimates in the Finite Element Analysis, Wiley-Inter science, New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

A. B. AndreevR. D. Lazarov and M. R. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182 (2005), 333-349.  doi: 10.1016/j.cam.2004.12.015.  Google Scholar

[3]

I. BabuškaR. B. Kellog and J. Pitkaranta, Direct and inverse error estimates for finite elements with mesh refinement, Numer. Math., 33 (1979), 447-471.  doi: 10.1007/BF01399326.  Google Scholar

[4]

I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 2 (1991), 641-787.   Google Scholar

[5]

I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), 736-754.  doi: 10.1137/0715049.  Google Scholar

[6]

L. Beirão da VeigaJ. Niiranen and R. Stenberg, A posteriori erros estimates for the Morley plate bending element, Numer. Math., 106 (2007), 165-179.  doi: 10.1007/s00211-007-0066-1.  Google Scholar

[7]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Method Appl. Sci., 2 (1980), 556-581.  doi: 10.1002/mma.1670020416.  Google Scholar

[8]

D. Boffi, Finite element approximation of eigenvalue problems, Acta Numerica, 19 (2010), 1-120.  doi: 10.1017/S0962492910000012.  Google Scholar

[9]

S. C. Brenner, $C^{0}$ interior penalty methods, Frontiers in Numerical Analysis-Durham 2010, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 85 (2012), 79-147.  doi: 10.1007/978-3-642-23914-4_2.  Google Scholar

[10]

S. C. Brenner and et al., Adaptive $C^0$ interior penalty method for biharmonic eigenvalue problems, Numerical Solution of PDE Eigenvalue Problems, Oberwolfach Rep, 10 (2013), 3265-3267.   Google Scholar

[11]

S. C. BrennerS. Y. GuT. Gudi and L.-Y. Sung, A quadratic $C^{0}$ interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type, SIAM J. Numer. Anal., 50 (2012), 2088-2110.  doi: 10.1137/110847469.  Google Scholar

[12]

S. C. BrennerP. Monk and J. G. Sun, $C^{0}$IPG method for biharmonic eigenvalue problems, Spectral and High Order Methods for Partial Differential Equation-ICOSAHOM 2014, Lect. Notes Comput. Sci. Eng., Springer, Cham, 106 (2015), 3-15.   Google Scholar

[13]

S. C. Brenner and M. Neilan, A $C^{0}$ interior penalty method for a fourth order elliptic singular perturbation problem, SIAM J. Numer. Anal., 49 (2011), 869-892.  doi: 10.1137/100786988.  Google Scholar

[14]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Second edition, Texts in Applied Mathematics, 15. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-3658-8.  Google Scholar

[15]

S. C. Brenner and L.-Y. Sung, $C^{0}$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22/23 (2005), 83-118.  doi: 10.1007/s10915-004-4135-7.  Google Scholar

[16]

S. C. BrennerK. N. Wang and J. Zhao, Poincaré-Friedrichs inequalities for piecewise $H^{2}$ functions, Numer. Funct. Anal. Optim., 25 (2004), 463-478.  doi: 10.1081/NFA-200042165.  Google Scholar

[17]

C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math., 125 (2014), 33-51.  doi: 10.1007/s00211-013-0559-z.  Google Scholar

[18] F. Chatelin, Spectral Approximations of Linear Operators, Computer Science and Applied Mathematics, Academic Press, Inc., New York, 1983.   Google Scholar
[19]

H. T. ChenH. L. GuoZ. M. Zhang and Q. S. Zou, A $C^0$ linear finite element method for two fourth-order eignvalue problems, IMA J. Numer. Anal., 37 (2017), 2120-2138.  doi: 10.1093/imanum/drw051.  Google Scholar

[20]

L. Chen, IFEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, University of California at Irvine, 2009. Google Scholar

[21]

P. G. Ciarlet, Basic error estimates for elliptic proplems, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅱ, North-Holland, Amsterdam, 2 (1991), 17-351.   Google Scholar

[22]

X. Y. DaiJ. C. Xu and A. H. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313-355.  doi: 10.1007/s00211-008-0169-3.  Google Scholar

[23]

X. Y. Dai and A. H. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46 (2007/08), 295-324.  doi: 10.1137/06067780X.  Google Scholar

[24]

G. EngelK. GarikipatiT. J. R. HughesM. G. LarsonL. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3669-3750.  doi: 10.1016/S0045-7825(02)00286-4.  Google Scholar

[25]

H. R. GengX. JiJ. G. Sun and L. W. Xu, $C^{0}$IP methods for the transmission eigenvalue problem, J. Sci. Comput., 68 (2016), 326-338.  doi: 10.1007/s10915-015-0140-2.  Google Scholar

[26]

T. Gudi, A new error analysis for discontinuous finite element methods for the linear elliptic problems, Math. Comp., 79 (2010), 2169-2189.  doi: 10.1090/S0025-5718-10-02360-4.  Google Scholar

[27]

H. L. GuoZ. M. Zhang and Q. S. Zou, A $C^0$ linear finite element method for biharmonic problems, J. Sci. Comput., 74 (2018), 1397-1422.  doi: 10.1007/s10915-017-0501-0.  Google Scholar

[28]

H. L. GuoZ. M. Zhang and R. Zhao, Superconvergent two-grid schemes for elliptic eigenvalue problems, J. Sci. Comput., 70 (2017), 125-148.  doi: 10.1007/s10915-016-0245-2.  Google Scholar

[29]

X. Z. Hu and X. L. Cheng, Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80 (2011), 1287-1301.  doi: 10.1090/S0025-5718-2011-02458-0.  Google Scholar

[30]

J. HuY. Q. Huang and Q. Lin, Lower bounds for eigenvalues of elliptic operators: By Nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.  doi: 10.1007/s10915-014-9821-5.  Google Scholar

[31]

J. HuZ. C. Shi and J. C. Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math., 121 (2012), 731-752.  doi: 10.1007/s00211-012-0445-0.  Google Scholar

[32]

H. Li and Y. D. Yang, $C^0$IPG adaptive algorithms for the biharmonic eigenvalue problem, Numer. Algor., 78 (2018), 553-567.  doi: 10.1007/s11075-017-0388-8.  Google Scholar

[33]

H. Li and Y. D. Yang, An adaptive $C^0$IPG method for the Helmholtz transmission eigenvalue problem, Science China Mathematics, 61 (2018), 1519-1542.  doi: 10.1007/s11425-017-9334-9.  Google Scholar

[34] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Inprovement, Science Press, Beijing, 2006.   Google Scholar
[35]

Q. Lin and H. H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comp., 84 (2015), 71-88.  doi: 10.1090/S0025-5718-2014-02825-1.  Google Scholar

[36]

P. MorinR. H. Nochetto and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Rev., 44 (2002), 631-658.  doi: 10.1137/S0036144502409093.  Google Scholar

[37]

J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1976.  Google Scholar

[38]

Q. Shen, A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem, Numer. Algor., 68 (2015), 455-466.  doi: 10.1007/s11075-014-9854-8.  Google Scholar

[39]

R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math., 33 (1979), 23-42.  doi: 10.1007/BF01396493.  Google Scholar

[40] Z. Shi and M. Wang, Finite Element Methods, Science Press, Beijing, 2013.   Google Scholar
[41]

R. Verfürth, A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996. Google Scholar

[42]

G. N. Wells and N. T. Dung, A $C^{0}$ discontinuous Galerkin formulation for Kirhhoff plates, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3370-3380.  doi: 10.1016/j.cma.2007.03.008.  Google Scholar

[43]

H. H. Xie and X. B. Yin, Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem, Adv. Comput. Math., 41 (2015), 799-812.  doi: 10.1007/s10444-014-9386-8.  Google Scholar

[44]

J. C. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29 (1992), 303-319.  doi: 10.1137/0729020.  Google Scholar

[45]

J. C. Xu and A. H. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70 (2001), 17-25.  doi: 10.1090/S0025-5718-99-01180-1.  Google Scholar

[46]

Y. D. Yang and H. Bi, Two-grid finite element discretization scheme based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49 (2011), 1602-1624.  doi: 10.1137/100810241.  Google Scholar

[47]

Y. D. Yang, H. Bi, J. Y. Han and Y. Y. Yu, The shifted-inverse iteration based on the multigrid discertiaztions for eigenvalue problems, SIAM J. Sci. Comput., 37 (2015), A2583–A2606. doi: 10.1137/140992011.  Google Scholar

[48]

Y. D. YangH. BiH. Li and J. Y. Han, A $C^{0}$IPG method and its error estimates for the Helmholtz transmission eigenvalue problem, J. Comput. Appl. Math., 326 (2017), 71-86.  doi: 10.1016/j.cam.2017.04.024.  Google Scholar

[49]

Y. D. YangZ. M. Zhang and F. B. Lin, Eigenvalue approximation from below using nonforming finite elements, Sci. China Math., 53 (2010), 137-150.  doi: 10.1007/s11425-009-0198-0.  Google Scholar

[50]

J. ZhouX. HuL. ZhongS. Shu and L. Chen, Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal., 52 (2014), 2027-2047.  doi: 10.1137/130919921.  Google Scholar

[51]

O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London-New York-Düsseldorf, 1971.  Google Scholar

show all references

References:
[1]

M. Ainsworth and J. T. Oden, A Posteriori Error Estimates in the Finite Element Analysis, Wiley-Inter science, New York, 2000. doi: 10.1002/9781118032824.  Google Scholar

[2]

A. B. AndreevR. D. Lazarov and M. R. Racheva, Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182 (2005), 333-349.  doi: 10.1016/j.cam.2004.12.015.  Google Scholar

[3]

I. BabuškaR. B. Kellog and J. Pitkaranta, Direct and inverse error estimates for finite elements with mesh refinement, Numer. Math., 33 (1979), 447-471.  doi: 10.1007/BF01399326.  Google Scholar

[4]

I. Babuška and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Handb. Numer. Anal., North-Holland, Amsterdam, 2 (1991), 641-787.   Google Scholar

[5]

I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15 (1978), 736-754.  doi: 10.1137/0715049.  Google Scholar

[6]

L. Beirão da VeigaJ. Niiranen and R. Stenberg, A posteriori erros estimates for the Morley plate bending element, Numer. Math., 106 (2007), 165-179.  doi: 10.1007/s00211-007-0066-1.  Google Scholar

[7]

H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Method Appl. Sci., 2 (1980), 556-581.  doi: 10.1002/mma.1670020416.  Google Scholar

[8]

D. Boffi, Finite element approximation of eigenvalue problems, Acta Numerica, 19 (2010), 1-120.  doi: 10.1017/S0962492910000012.  Google Scholar

[9]

S. C. Brenner, $C^{0}$ interior penalty methods, Frontiers in Numerical Analysis-Durham 2010, Lecture Notes in Computational Science and Engineering, Springer-Verlag, 85 (2012), 79-147.  doi: 10.1007/978-3-642-23914-4_2.  Google Scholar

[10]

S. C. Brenner and et al., Adaptive $C^0$ interior penalty method for biharmonic eigenvalue problems, Numerical Solution of PDE Eigenvalue Problems, Oberwolfach Rep, 10 (2013), 3265-3267.   Google Scholar

[11]

S. C. BrennerS. Y. GuT. Gudi and L.-Y. Sung, A quadratic $C^{0}$ interior penalty method for linear fourth order boundary value problems with boundary conditions of the Cahn-Hilliard type, SIAM J. Numer. Anal., 50 (2012), 2088-2110.  doi: 10.1137/110847469.  Google Scholar

[12]

S. C. BrennerP. Monk and J. G. Sun, $C^{0}$IPG method for biharmonic eigenvalue problems, Spectral and High Order Methods for Partial Differential Equation-ICOSAHOM 2014, Lect. Notes Comput. Sci. Eng., Springer, Cham, 106 (2015), 3-15.   Google Scholar

[13]

S. C. Brenner and M. Neilan, A $C^{0}$ interior penalty method for a fourth order elliptic singular perturbation problem, SIAM J. Numer. Anal., 49 (2011), 869-892.  doi: 10.1137/100786988.  Google Scholar

[14]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Second edition, Texts in Applied Mathematics, 15. Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-3658-8.  Google Scholar

[15]

S. C. Brenner and L.-Y. Sung, $C^{0}$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22/23 (2005), 83-118.  doi: 10.1007/s10915-004-4135-7.  Google Scholar

[16]

S. C. BrennerK. N. Wang and J. Zhao, Poincaré-Friedrichs inequalities for piecewise $H^{2}$ functions, Numer. Funct. Anal. Optim., 25 (2004), 463-478.  doi: 10.1081/NFA-200042165.  Google Scholar

[17]

C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math., 125 (2014), 33-51.  doi: 10.1007/s00211-013-0559-z.  Google Scholar

[18] F. Chatelin, Spectral Approximations of Linear Operators, Computer Science and Applied Mathematics, Academic Press, Inc., New York, 1983.   Google Scholar
[19]

H. T. ChenH. L. GuoZ. M. Zhang and Q. S. Zou, A $C^0$ linear finite element method for two fourth-order eignvalue problems, IMA J. Numer. Anal., 37 (2017), 2120-2138.  doi: 10.1093/imanum/drw051.  Google Scholar

[20]

L. Chen, IFEM: An Innovative Finite Element Methods Package in MATLAB, Technical Report, University of California at Irvine, 2009. Google Scholar

[21]

P. G. Ciarlet, Basic error estimates for elliptic proplems, Handbook of Numerical Analysis, Handb. Numer. Anal., Ⅱ, North-Holland, Amsterdam, 2 (1991), 17-351.   Google Scholar

[22]

X. Y. DaiJ. C. Xu and A. H. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numer. Math., 110 (2008), 313-355.  doi: 10.1007/s00211-008-0169-3.  Google Scholar

[23]

X. Y. Dai and A. H. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems, SIAM J. Numer. Anal., 46 (2007/08), 295-324.  doi: 10.1137/06067780X.  Google Scholar

[24]

G. EngelK. GarikipatiT. J. R. HughesM. G. LarsonL. Mazzei and R. L. Taylor, Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3669-3750.  doi: 10.1016/S0045-7825(02)00286-4.  Google Scholar

[25]

H. R. GengX. JiJ. G. Sun and L. W. Xu, $C^{0}$IP methods for the transmission eigenvalue problem, J. Sci. Comput., 68 (2016), 326-338.  doi: 10.1007/s10915-015-0140-2.  Google Scholar

[26]

T. Gudi, A new error analysis for discontinuous finite element methods for the linear elliptic problems, Math. Comp., 79 (2010), 2169-2189.  doi: 10.1090/S0025-5718-10-02360-4.  Google Scholar

[27]

H. L. GuoZ. M. Zhang and Q. S. Zou, A $C^0$ linear finite element method for biharmonic problems, J. Sci. Comput., 74 (2018), 1397-1422.  doi: 10.1007/s10915-017-0501-0.  Google Scholar

[28]

H. L. GuoZ. M. Zhang and R. Zhao, Superconvergent two-grid schemes for elliptic eigenvalue problems, J. Sci. Comput., 70 (2017), 125-148.  doi: 10.1007/s10915-016-0245-2.  Google Scholar

[29]

X. Z. Hu and X. L. Cheng, Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80 (2011), 1287-1301.  doi: 10.1090/S0025-5718-2011-02458-0.  Google Scholar

[30]

J. HuY. Q. Huang and Q. Lin, Lower bounds for eigenvalues of elliptic operators: By Nonconforming finite element methods, J. Sci. Comput., 61 (2014), 196-221.  doi: 10.1007/s10915-014-9821-5.  Google Scholar

[31]

J. HuZ. C. Shi and J. C. Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math., 121 (2012), 731-752.  doi: 10.1007/s00211-012-0445-0.  Google Scholar

[32]

H. Li and Y. D. Yang, $C^0$IPG adaptive algorithms for the biharmonic eigenvalue problem, Numer. Algor., 78 (2018), 553-567.  doi: 10.1007/s11075-017-0388-8.  Google Scholar

[33]

H. Li and Y. D. Yang, An adaptive $C^0$IPG method for the Helmholtz transmission eigenvalue problem, Science China Mathematics, 61 (2018), 1519-1542.  doi: 10.1007/s11425-017-9334-9.  Google Scholar

[34] Q. Lin and J. Lin, Finite Element Methods: Accuracy and Inprovement, Science Press, Beijing, 2006.   Google Scholar
[35]

Q. Lin and H. H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comp., 84 (2015), 71-88.  doi: 10.1090/S0025-5718-2014-02825-1.  Google Scholar

[36]

P. MorinR. H. Nochetto and K. G. Siebert, Convergence of adaptive finite element methods, SIAM Rev., 44 (2002), 631-658.  doi: 10.1137/S0036144502409093.  Google Scholar

[37]

J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1976.  Google Scholar

[38]

Q. Shen, A posteriori error estimates of the Morley element for the fourth order elliptic eigenvalue problem, Numer. Algor., 68 (2015), 455-466.  doi: 10.1007/s11075-014-9854-8.  Google Scholar

[39]

R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math., 33 (1979), 23-42.  doi: 10.1007/BF01396493.  Google Scholar

[40] Z. Shi and M. Wang, Finite Element Methods, Science Press, Beijing, 2013.   Google Scholar
[41]

R. Verfürth, A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, 1996. Google Scholar

[42]

G. N. Wells and N. T. Dung, A $C^{0}$ discontinuous Galerkin formulation for Kirhhoff plates, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3370-3380.  doi: 10.1016/j.cma.2007.03.008.  Google Scholar

[43]

H. H. Xie and X. B. Yin, Acceleration of stabilized finite element discretizations for the Stokes eigenvalue problem, Adv. Comput. Math., 41 (2015), 799-812.  doi: 10.1007/s10444-014-9386-8.  Google Scholar

[44]

J. C. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29 (1992), 303-319.  doi: 10.1137/0729020.  Google Scholar

[45]

J. C. Xu and A. H. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70 (2001), 17-25.  doi: 10.1090/S0025-5718-99-01180-1.  Google Scholar

[46]

Y. D. Yang and H. Bi, Two-grid finite element discretization scheme based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49 (2011), 1602-1624.  doi: 10.1137/100810241.  Google Scholar

[47]

Y. D. Yang, H. Bi, J. Y. Han and Y. Y. Yu, The shifted-inverse iteration based on the multigrid discertiaztions for eigenvalue problems, SIAM J. Sci. Comput., 37 (2015), A2583–A2606. doi: 10.1137/140992011.  Google Scholar

[48]

Y. D. YangH. BiH. Li and J. Y. Han, A $C^{0}$IPG method and its error estimates for the Helmholtz transmission eigenvalue problem, J. Comput. Appl. Math., 326 (2017), 71-86.  doi: 10.1016/j.cam.2017.04.024.  Google Scholar

[49]

Y. D. YangZ. M. Zhang and F. B. Lin, Eigenvalue approximation from below using nonforming finite elements, Sci. China Math., 53 (2010), 137-150.  doi: 10.1007/s11425-009-0198-0.  Google Scholar

[50]

J. ZhouX. HuL. ZhongS. Shu and L. Chen, Two-grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal., 52 (2014), 2027-2047.  doi: 10.1137/130919921.  Google Scholar

[51]

O. C. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill, London-New York-Düsseldorf, 1971.  Google Scholar

Figure 1.  The convergence rates for the unit square with a slit using quadratic(left) and cubic(right) $ C^0 $IPG methods
Figure 2.  The convergence rates for the L-shaped domain using quadratic(left) and cubic(right) $ C^0 $IPG methods
Table 1.  the first eigenvalue approximation for (2.1) on the unit square using quadratic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 1570.1117 .013 1307.7056 .033 1307.7017 .058
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 1350.9328 .044 1295.6742 1.01 1295.6742 1.61
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 1307.7017 .055 1294.9765 37.9 1294.9736 56.9
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 1297.9745 .348 1294.8984 283 $ – $ $ – $
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 1570.1117 .013 1307.7056 .033 1307.7017 .058
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 1350.9328 .044 1295.6742 1.01 1295.6742 1.61
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 1307.7017 .055 1294.9765 37.9 1294.9736 56.9
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 1297.9745 .348 1294.8984 283 $ – $ $ – $
Table 2.  the first eigenvalue approximation for (2.1) on the unit square using cubic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 1300.7399 .017 1294.9569 .111 1294.9569 .226
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 1295.3239 .069 1294.9322 3.83 1294.9322 6.93
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 1294.9569 .222 1294.4529 208 1294.4621 1602
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 1300.7399 .017 1294.9569 .111 1294.9569 .226
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 1295.3239 .069 1294.9322 3.83 1294.9322 6.93
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 1294.9569 .222 1294.4529 208 1294.4621 1602
Table 3.  the first eigenvalue approximation for (2.1) on the unit square with a slit using quadratic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 10678.0553 .010 6541.4871 .037 6539.8146 .051
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 7228.7805 .011 6250.7646 .948 6250.6718 1.42
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6539.8146 .070 6202.8719 29.7 6202.8660 44.0
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 6328.9667 .298 6195.7389 217 $ -- $ $ -- $
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 10678.0553 .010 6541.4871 .037 6539.8146 .051
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 7228.7805 .011 6250.7646 .948 6250.6718 1.42
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6539.8146 .070 6202.8719 29.7 6202.8660 44.0
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 6328.9667 .298 6195.7389 217 $ -- $ $ -- $
Table 4.  the first eigenvalue approximation for (2.1) on the unit square with a slit using cubic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 6416.8901 .022 6226.2450 .096 6226.2445 .192
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 6271.1319 .032 6197.8931 3.24 6197.8930 5.91
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6226.2445 .192 6190.6868 165 6190.6738 216
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 6416.8901 .022 6226.2450 .096 6226.2445 .192
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 6271.1319 .032 6197.8931 3.24 6197.8930 5.91
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6226.2445 .192 6190.6868 165 6190.6738 216
Table 5.  the first eigenvalue approximation for (2.1) on the L-shaped domain using quadratic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 11346.3219 .008 7019.4044 .017 7017.9070 .031
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 7713.4188 .008 6750.3026 .613 6750.2705 1.13
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 7017.9070 .032 6712.6852 21.8 6712.6814 32.3
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 6818.6359 .204 6707.7302 155 6707.6827 191
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 11346.3219 .008 7019.4044 .017 7017.9070 .031
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 7713.4188 .008 6750.3026 .613 6750.2705 1.13
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 7017.9070 .032 6712.6852 21.8 6712.6814 32.3
$ \frac{\sqrt{2}}{64} $ $ \frac{\sqrt{2}}{1024} $ 6818.6359 .204 6707.7302 155 6707.6827 191
Table 6.  the first eigenvalue approximation for (2.1) on the L-shaped domain using cubic $ C^0 $IPG method
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 6896.1972 .009 6729.3265 .066 6729.3263 .136
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 6764.7073 .022 6709.0991 2.35 6709.0990 4.16
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6729.3263 .136 6704.3362 117 6704.3206 157
$ H $ $ h $ $ \lambda_{H} $ $ t_1(s) $ $ \lambda^h $ $ t_2(s) $ $ \lambda_{h} $ $ t_3(s) $
$ \frac{\sqrt{2}}{8} $ $ \frac{\sqrt{2}}{32} $ 6896.1972 .009 6729.3265 .066 6729.3263 .136
$ \frac{\sqrt{2}}{16} $ $ \frac{\sqrt{2}}{128} $ 6764.7073 .022 6709.0991 2.35 6709.0990 4.16
$ \frac{\sqrt{2}}{32} $ $ \frac{\sqrt{2}}{512} $ 6729.3263 .136 6704.3362 117 6704.3206 157
[1]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[2]

Tong Zhang, Jinyun Yuan. Two novel decoupling algorithms for the steady Stokes-Darcy model based on two-grid discretizations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 849-865. doi: 10.3934/dcdsb.2014.19.849

[3]

Yun Chen, Jiasheng Huang, Si Li, Yao Lu, Yuesheng Xu. A content-adaptive unstructured grid based integral equation method with the TV regularization for SPECT reconstruction. Inverse Problems & Imaging, 2020, 14 (1) : 27-52. doi: 10.3934/ipi.2019062

[4]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[5]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[6]

Jing Zhou, Dejun Chen, Zhenbo Wang, Wenxun Xing. A conic approximation method for the 0-1 quadratic knapsack problem. Journal of Industrial & Management Optimization, 2013, 9 (3) : 531-547. doi: 10.3934/jimo.2013.9.531

[7]

Hung-Wen Kuo. The initial layer for Rayleigh problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 137-170. doi: 10.3934/dcdsb.2011.15.137

[8]

Yafeng Li, Guo Sun, Yiju Wang. A smoothing Broyden-like method for polyhedral cone constrained eigenvalue problem. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 529-537. doi: 10.3934/naco.2011.1.529

[9]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2020013

[11]

Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577

[12]

Piotr Kościelniak, Marcin Mazur. On $C^0$ genericity of various shadowing properties. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 523-530. doi: 10.3934/dcds.2005.12.523

[13]

Kingshook Biswas. Maximal abelian torsion subgroups of Diff( C,0). Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 839-844. doi: 10.3934/dcds.2011.29.839

[14]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2019017

[15]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[16]

Jinchao Xu. The single-grid multilevel method and its applications. Inverse Problems & Imaging, 2013, 7 (3) : 987-1005. doi: 10.3934/ipi.2013.7.987

[17]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[18]

Gang Qian, Deren Han, Lingling Xu, Hai Yang. Solving nonadditive traffic assignment problems: A self-adaptive projection-auxiliary problem method for variational inequalities. Journal of Industrial & Management Optimization, 2013, 9 (1) : 255-274. doi: 10.3934/jimo.2013.9.255

[19]

Fernando Jiménez, Jürgen Scheurle. On some aspects of the discretization of the suslov problem. Journal of Geometric Mechanics, 2018, 10 (1) : 43-68. doi: 10.3934/jgm.2018002

[20]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (72)
  • HTML views (145)
  • Cited by (0)

Other articles
by authors

[Back to Top]