May  2020, 25(5): 1835-1858. doi: 10.3934/dcdsb.2020005

On the limit cycles of a class of discontinuous piecewise linear differential systems

1. 

Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2. 

Instituto de Matemática e Estatística, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil

* Corresponding author: Jaume Llibre

Received  December 2018 Revised  July 2019 Published  December 2019

Fund Project: The first author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER) and grant MDM-2014-0445, the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author is partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil(CAPES) grant PDSE-88881.133794/2016-01 and a CAPES finance code 001 grant.

In this paper we consider discontinuous piecewise linear differential systems whose discontinuity set is a straight line $ L $ which does not pass through the origin. These systems are formed by two linear differential systems of the form $ \dot{x} = Ax\pm b $. We study the limit cycles of this class of discontinuous piecewise linear differential systems. We do this study by analyzing the fixed points of the return map of the system defined on the straight line $ L $. This kind of differential systems appear in control theory.

Citation: Jaume Llibre, Lucyjane de A. S. Menezes. On the limit cycles of a class of discontinuous piecewise linear differential systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1835-1858. doi: 10.3934/dcdsb.2020005
References:
[1]

J. C. ArtésJ. LlibreJ. C. Medrado and M. A. Teixeira, Piecewise linear differential systems with two real saddles, Math. and Comp. in Simul., 95 (2014), 13-22.  doi: 10.1016/j.matcom.2013.02.007.  Google Scholar

[2]

O. A. R. Cespedes, Ciclos Limite e Singularidades Típicas de Sistemas de Equações Diferenciais Suaves por Partes, Ph.D thesis, Universidade Federal de Goiás, 2015. Google Scholar

[3]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, J. App. Dyn. Systems, 11 (2012), 182-211.  doi: 10.1137/11083928X.  Google Scholar

[4]

M. A. Han and W. N. Zhang, On Hopf bifurcation in non-smooth planar systems, Differential Equations, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[5]

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[6]

J. H. Liang and S. Y. Tang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge, Nonlinear Anal., 76 (2013), 165-180.  doi: 10.1016/j.na.2012.08.013.  Google Scholar

[7]

J. LlibreD. D. Novaes and M. A. Teixeira, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dyn., 82 (2015), 1159-1175.  doi: 10.1007/s11071-015-2223-x.  Google Scholar

[8]

J. Llibre and A. E. Teruel, Existence of Poincaré maps in piecewise linear differential systems in $ {\mathbb{R}}^n$, Int. J. Bifurcation and Chaos, 14 (2004), 2843-2851.  doi: 10.1142/S0218127404010874.  Google Scholar

[9]

J. Llibre and A. E. Teruel, Introduction to the Qualitative Theory of Differential Systems, Birkhäuser/Springer, Basel, 2014. doi: 10.1007/978-3-0348-0657-2.  Google Scholar

[10]

J. Llibre and E. Ponce, Three limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. of Cont., Discr. Impul. Syst., Series B, 19 (2012), 325-335.   Google Scholar

[11]

J. C. Medrado and J. Torregrosa, Uniqueness of limit cycles for sewing piecewise linear systems, J. Math. Anal. Appl., 431 (2015), 529-544.  doi: 10.1016/j.jmaa.2015.05.064.  Google Scholar

show all references

References:
[1]

J. C. ArtésJ. LlibreJ. C. Medrado and M. A. Teixeira, Piecewise linear differential systems with two real saddles, Math. and Comp. in Simul., 95 (2014), 13-22.  doi: 10.1016/j.matcom.2013.02.007.  Google Scholar

[2]

O. A. R. Cespedes, Ciclos Limite e Singularidades Típicas de Sistemas de Equações Diferenciais Suaves por Partes, Ph.D thesis, Universidade Federal de Goiás, 2015. Google Scholar

[3]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, J. App. Dyn. Systems, 11 (2012), 182-211.  doi: 10.1137/11083928X.  Google Scholar

[4]

M. A. Han and W. N. Zhang, On Hopf bifurcation in non-smooth planar systems, Differential Equations, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[5]

S.-M. Huan and X.-S. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 32 (2012), 2147-2164.  doi: 10.3934/dcds.2012.32.2147.  Google Scholar

[6]

J. H. Liang and S. Y. Tang, Global qualitative analysis of a non-smooth Gause predator-prey model with a refuge, Nonlinear Anal., 76 (2013), 165-180.  doi: 10.1016/j.na.2012.08.013.  Google Scholar

[7]

J. LlibreD. D. Novaes and M. A. Teixeira, Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dyn., 82 (2015), 1159-1175.  doi: 10.1007/s11071-015-2223-x.  Google Scholar

[8]

J. Llibre and A. E. Teruel, Existence of Poincaré maps in piecewise linear differential systems in $ {\mathbb{R}}^n$, Int. J. Bifurcation and Chaos, 14 (2004), 2843-2851.  doi: 10.1142/S0218127404010874.  Google Scholar

[9]

J. Llibre and A. E. Teruel, Introduction to the Qualitative Theory of Differential Systems, Birkhäuser/Springer, Basel, 2014. doi: 10.1007/978-3-0348-0657-2.  Google Scholar

[10]

J. Llibre and E. Ponce, Three limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. of Cont., Discr. Impul. Syst., Series B, 19 (2012), 325-335.   Google Scholar

[11]

J. C. Medrado and J. Torregrosa, Uniqueness of limit cycles for sewing piecewise linear systems, J. Math. Anal. Appl., 431 (2015), 529-544.  doi: 10.1016/j.jmaa.2015.05.064.  Google Scholar

Figure 1.  Qualitative behavior of the Poincaré map $ \pi_{++} $; $ (a) \quad t>0 $ and $ (b) \quad t<0 $
Figure 2.  Qualitative behavior of the Poincaré map $ \pi_{++} $; $ (a) \quad t>0 $ and $ (b) \quad t<0 $
Figure 3.  Qualitative behavior of the Poincaré map $ \pi_{++} $; $ (a) \quad t>0 $ and $ (b) \quad t<0 $
Figure 4.  Qualitative behavior of the Poincaré map $ \widetilde{\pi}_{++} $; $ (a) \quad t>0 $ and $ (b) \quad t<0 $
Figure 5.  Relation between the half–lines $ L^O_+ $, $ L^I_+ $, $ L^{*O}_+ $, and $ L^{*I}_+ $ depending on (a) $ e_+\in S_- $, (b) $ e_+\in S_+ $
[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (143)
  • HTML views (157)
  • Cited by (0)

Other articles
by authors

[Back to Top]