May  2020, 25(5): 1895-1905. doi: 10.3934/dcdsb.2020008

Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set

1. 

Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Calle 73 No. 73A - 226, Medellín, Colombia

2. 

Escuela de Matemáticas, Universidad Nacional de Colombia, Sede Medellín, Cra. 65 No. 59A - 110

* Corresponding author: Hector A. Tabares-Ospina

Agencia de Educación Superior de Medellín (SAPIENCIA)

Received  January 2019 Revised  May 2019 Published  December 2019

The present article proposes a new geometric space in the complex plane of the Mandelbrot set, framed in the diagram of orbits and attractors, to characterize the dynamics of the curves of the demand of daily electrical power, with the purpose of discovering other observations enabling the elevation of new theoretical approaches. The result shows a different method to evaluate the dynamics of the electric power demand curve, using fractal orbital diagrams. This method is a new contribution that extends universal knowledge about the dynamics of complex systems and fractal geometry. Finally, the reader is informed that the data series used in this article was used in a previous publication, but using a different fractal technique to describe its dynamics.

Citation: Héctor A. Tabares-Ospina, Mauricio Osorio. Methodology for the characterization of the electrical power demand curve, by means of fractal orbit diagrams on the complex plane of Mandelbrot set. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1895-1905. doi: 10.3934/dcdsb.2020008
References:
[1]

M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitege, D. Saupe and R. F. Voss, The Science of Fractal Images, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3784-6.  Google Scholar

[2]

J. Borjon, Caos, Orden y Desorden en el Sistema Monetario y Financiero Internacional, Plaza y Valdes, 1$^{st}$ edition, New York, 2002. Google Scholar

[3]

T. A. GarciaG. A. Tamura OzakiR. C. CastoldiT. E. KoikeR. C. Trindade Camargo and J. C. S. Camargo Filho, Fractal dimension in the evaluation of different treatments of muscular injury in rats, Tissue Cell, 54 (2018), 120-126.  doi: 10.1016/j.tice.2018.08.014.  Google Scholar

[4]

H. R. Cui and L. Yang., Short-term electricity price forecast based on improved fractal theory, IEEE Int. Conf. Comput. Eng. Technol., 473 (2009), 347-351.  doi: 10.1109/ICCET.2009.73.  Google Scholar

[5]

J. HernandezS. Mejia and A. Gama, Fractal properties of biophysical models of pericellular brushes can be used to differentiate between cancerous and normal cervical epithelial cells, Colloids Surfaces B Biointerfaces, 170 (2018), 572-577.   Google Scholar

[6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[7]

R. Kumar and P. Chaubey, On the design of tree-type ultra wideband fractal Antenna for DS-CDMA system, J. Microwaves Optoelectron Electromagn Appl., 11 (2012), 107-121.   Google Scholar

[8]

G. Losa, Fractals and their contribution to biology and medicine, Medicographia, 34 (2012), 365-374.   Google Scholar

[9]

J. Ma and M. Zhai, Fractal and multi-fractal features of the broadband power line communication signals, Comput. Electr. Eng., 72 (2018), 566-576.   Google Scholar

[10]

B. B. Mandelbrot and R. L. Hudson, The (mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward, Basic Books, New York, 2004.  Google Scholar

[11]

P. MoonJ. MudayS. RaynorJ. SchirilloC. BoydstonM. Fairbanks and R. P. Taylor, Fractal images induce fractal pupil dilations and constrictions, Int. J Psychophysiol, 93 (2014), 316-321.  doi: 10.1016/j.ijpsycho.2014.06.013.  Google Scholar

[12]

N. PopovicM. RadunovicJ. Badnjar and T. Popovic, Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes, Microvascular Research, 118 (2018), 36-43.  doi: 10.1016/j.mvr.2018.02.006.  Google Scholar

[13]

V. RodríguezB. PrietoH. CorreaM. SoracipaP. MendezC. Bernal and et al., Nueva metodología de evaluación del Holter basada en los sistemas dinámicos y la geometría fractal: Confirmación de su aplicabilidad a nivel clínico, Rev. La Univ. Ind. Santander Salud., 48 (2016), 27-36.   Google Scholar

[14]

G. Salvó and M. N. Piacquadio, Multifractal analysis of electricity demand as a tool for spatial forecasting, Energy Sustain. Dev., 38 (2017), 67-76.  doi: 10.1016/j.esd.2017.02.005.  Google Scholar

[15] S. H. Strogatz, Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.   Google Scholar
[16]

H. A. Tabares-Ospina and J. E. Candelo-Becerra, Topological properties of fractal Julia sets related to the signs of real and reactive electric powers, Fractals, 10 (2019), 1950066, 11 pp. doi: 10.1142/S0218348X1950066X.  Google Scholar

[17]

H. A. Tabares-Ospina, J. E. Candelo-Becerra and F. E. Hoyos Velasco, Fractal representation of the power demand based on topological properties of Julia sets, Int. J. Electr. Comput. Eng., 9 (2019), http://dx.doi.org/10.11591/ijece.v9i4.pp. doi: 10.11591/ijece.v9i4.pp2831-2839.  Google Scholar

[18]

D. D. YeM. F. DaiY. Sun and W. Y. Su, Average weighted receiving time on the non-homogeneous double-weighted fractal networks, Phys. A, 473 (2017), 390-402.  doi: 10.1016/j.physa.2017.01.013.  Google Scholar

[19]

M. Y. Zhai, A new method for short-term load forecasting based on fractal interpretation and wavelet analysis, Int. J. Electr. Power Energy Syst., 69 (2015), 241-245.  doi: 10.1016/j.ijepes.2014.12.087.  Google Scholar

[20]

Z. ZhaoJ. Zhu and B. Xia, Multi-fractal fluctuation features of thermal power coal price in China, Energy, 117 (2016), 10-18.   Google Scholar

[21]

H.A. Tabares-Ospina, F. Angulo, M. Osorio, A new methodology to analyze the dynamic of daily power demand with attractors into the Mandelbrot set, Fractals, 28 (2020) 2050003 1-9. DOI: 10.1142/S0218348X1950066X. Google Scholar

show all references

References:
[1]

M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot, H. O. Peitege, D. Saupe and R. F. Voss, The Science of Fractal Images, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-3784-6.  Google Scholar

[2]

J. Borjon, Caos, Orden y Desorden en el Sistema Monetario y Financiero Internacional, Plaza y Valdes, 1$^{st}$ edition, New York, 2002. Google Scholar

[3]

T. A. GarciaG. A. Tamura OzakiR. C. CastoldiT. E. KoikeR. C. Trindade Camargo and J. C. S. Camargo Filho, Fractal dimension in the evaluation of different treatments of muscular injury in rats, Tissue Cell, 54 (2018), 120-126.  doi: 10.1016/j.tice.2018.08.014.  Google Scholar

[4]

H. R. Cui and L. Yang., Short-term electricity price forecast based on improved fractal theory, IEEE Int. Conf. Comput. Eng. Technol., 473 (2009), 347-351.  doi: 10.1109/ICCET.2009.73.  Google Scholar

[5]

J. HernandezS. Mejia and A. Gama, Fractal properties of biophysical models of pericellular brushes can be used to differentiate between cancerous and normal cervical epithelial cells, Colloids Surfaces B Biointerfaces, 170 (2018), 572-577.   Google Scholar

[6] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995.  doi: 10.1017/CBO9780511809187.  Google Scholar
[7]

R. Kumar and P. Chaubey, On the design of tree-type ultra wideband fractal Antenna for DS-CDMA system, J. Microwaves Optoelectron Electromagn Appl., 11 (2012), 107-121.   Google Scholar

[8]

G. Losa, Fractals and their contribution to biology and medicine, Medicographia, 34 (2012), 365-374.   Google Scholar

[9]

J. Ma and M. Zhai, Fractal and multi-fractal features of the broadband power line communication signals, Comput. Electr. Eng., 72 (2018), 566-576.   Google Scholar

[10]

B. B. Mandelbrot and R. L. Hudson, The (mis) Behaviour of Markets: A Fractal View of Risk, Ruin and Reward, Basic Books, New York, 2004.  Google Scholar

[11]

P. MoonJ. MudayS. RaynorJ. SchirilloC. BoydstonM. Fairbanks and R. P. Taylor, Fractal images induce fractal pupil dilations and constrictions, Int. J Psychophysiol, 93 (2014), 316-321.  doi: 10.1016/j.ijpsycho.2014.06.013.  Google Scholar

[12]

N. PopovicM. RadunovicJ. Badnjar and T. Popovic, Fractal dimension and lacunarity analysis of retinal microvascular morphology in hypertension and diabetes, Microvascular Research, 118 (2018), 36-43.  doi: 10.1016/j.mvr.2018.02.006.  Google Scholar

[13]

V. RodríguezB. PrietoH. CorreaM. SoracipaP. MendezC. Bernal and et al., Nueva metodología de evaluación del Holter basada en los sistemas dinámicos y la geometría fractal: Confirmación de su aplicabilidad a nivel clínico, Rev. La Univ. Ind. Santander Salud., 48 (2016), 27-36.   Google Scholar

[14]

G. Salvó and M. N. Piacquadio, Multifractal analysis of electricity demand as a tool for spatial forecasting, Energy Sustain. Dev., 38 (2017), 67-76.  doi: 10.1016/j.esd.2017.02.005.  Google Scholar

[15] S. H. Strogatz, Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering, Second edition, Westview Press, Boulder, CO, 2015.   Google Scholar
[16]

H. A. Tabares-Ospina and J. E. Candelo-Becerra, Topological properties of fractal Julia sets related to the signs of real and reactive electric powers, Fractals, 10 (2019), 1950066, 11 pp. doi: 10.1142/S0218348X1950066X.  Google Scholar

[17]

H. A. Tabares-Ospina, J. E. Candelo-Becerra and F. E. Hoyos Velasco, Fractal representation of the power demand based on topological properties of Julia sets, Int. J. Electr. Comput. Eng., 9 (2019), http://dx.doi.org/10.11591/ijece.v9i4.pp. doi: 10.11591/ijece.v9i4.pp2831-2839.  Google Scholar

[18]

D. D. YeM. F. DaiY. Sun and W. Y. Su, Average weighted receiving time on the non-homogeneous double-weighted fractal networks, Phys. A, 473 (2017), 390-402.  doi: 10.1016/j.physa.2017.01.013.  Google Scholar

[19]

M. Y. Zhai, A new method for short-term load forecasting based on fractal interpretation and wavelet analysis, Int. J. Electr. Power Energy Syst., 69 (2015), 241-245.  doi: 10.1016/j.ijepes.2014.12.087.  Google Scholar

[20]

Z. ZhaoJ. Zhu and B. Xia, Multi-fractal fluctuation features of thermal power coal price in China, Energy, 117 (2016), 10-18.   Google Scholar

[21]

H.A. Tabares-Ospina, F. Angulo, M. Osorio, A new methodology to analyze the dynamic of daily power demand with attractors into the Mandelbrot set, Fractals, 28 (2020) 2050003 1-9. DOI: 10.1142/S0218348X1950066X. Google Scholar

Figure 1.  Graphical representation of the Mandelbrot set
Figure 2.  Relationship between Mandelbrot set and orbital diagrams
Figure 3.  Algorithm with the steps used to obtain the fractal of the power demand
Figure 4.  The typical demand curves of active and reactive electric power
Figure 5.  Electric power demand curve plotted in the first quadrant of the complex plane of Mandelbrot set
Figure 6.  Representation of orbit diagram of power demand in the first quadrant of the complex plane of M set
Table 1.  Daily load demand represented by hour
Hour $ P $ $ Q $ $ P_{pu} $ $ Q_{pu} $ $ NumOrbs $
$ 00:00:00 $ $ 889 $ $ 371 $ $ 0.222 $ $ 0.092 $ $ 5 $
$ 01:00:00 $ $ 834 $ $ 405 $ $ 0.287 $ $ 0.101 $ $ 5 $
$ 02:00:00 $ $ 792 $ $ 337 $ $ 0.197 $ $ 0.082 $ $ 5 $
$ 03:00:00 $ $ 790 $ $ 324 $ $ 0.199 $ $ 0.081 $ $ 5 $
$ 04:00:00 $ $ 804 $ $ 323 $ $ 0.201 $ $ 0.080 $ $ 3 $
$ 05:00:00 $ $ 925 $ $ 355 $ $ 0.231 $ $ 0.088 $ $ 5 $
$ 06:00:00 $ $ 1041 $ $ 482 $ $ 0.260 $ $ 0.120 $ $ 9 $
$ 07:00:00 $ $ 1105 $ $ 556 $ $ 0.276 $ $ 0.139 $ $ 9 $
$ 08:00:00 $ $ 1191 $ $ 610 $ $ 0.297 $ $ 0.152 $ $ 18 $
$ 09:00:00 $ $ 1256 $ $ 704 $ $ 0.314 $ $ 0.176 $ $ 30 $
$ 10:00:00 $ $ 1309 $ $ 744 $ $ 0.327 $ $ 0.186 $ $ 32 $
$ 11:00:00 $ $ 1366 $ $ 775 $ $ 0.341 $ $ 0.193 $ $ 50 $
$ 12:00:00 $ $ 1385 $ $ 793 $ $ 0.346 $ $ 0.198 $ $ 53 $
$ 13:00:00 $ $ 1356 $ $ 774 $ $ 0.339 $ $ 0.193 $ $ 44 $
$ 14:00:00 $ $ 1337 $ $ 759 $ $ 0.334 $ $ 0.189 $ $ 38 $
$ 15:00:00 $ $ 1350 $ $ 774 $ $ 0.337 $ $ 0.193 $ $ 41 $
$ 16:00:00 $ $ 1336 $ $ 773 $ $ 0.334 $ $ 0.193 $ $ 41 $
$ 17:00:00 $ $ 1312 $ $ 749 $ $ 0.328 $ $ 0.187 $ $ 41 $
$ 18:00:00 $ $ 1287 $ $ 687 $ $ 0.321 $ $ 0.171 $ $ 41 $
$ 19:00:00 $ $ 1420 $ $ 683 $ $ 0.355 $ $ 0.170 $ $ 89 $
$ 20:00:00 $ $ 1389 $ $ 660 $ $ 0.351 $ $ 0.167 $ $ 89 $
$ 21:00:00 $ $ 1311 $ $ 605 $ $ 0.327 $ $ 0.151 $ $ 41 $
$ 22:00:00 $ $ 1175 $ $ 544 $ $ 0.293 $ $ 0.136 $ $ 18 $
$ 23:00:00 $ $ 1030 $ $ 489 $ $ 0.257 $ $ 0.122 $ $ 14 $
Hour $ P $ $ Q $ $ P_{pu} $ $ Q_{pu} $ $ NumOrbs $
$ 00:00:00 $ $ 889 $ $ 371 $ $ 0.222 $ $ 0.092 $ $ 5 $
$ 01:00:00 $ $ 834 $ $ 405 $ $ 0.287 $ $ 0.101 $ $ 5 $
$ 02:00:00 $ $ 792 $ $ 337 $ $ 0.197 $ $ 0.082 $ $ 5 $
$ 03:00:00 $ $ 790 $ $ 324 $ $ 0.199 $ $ 0.081 $ $ 5 $
$ 04:00:00 $ $ 804 $ $ 323 $ $ 0.201 $ $ 0.080 $ $ 3 $
$ 05:00:00 $ $ 925 $ $ 355 $ $ 0.231 $ $ 0.088 $ $ 5 $
$ 06:00:00 $ $ 1041 $ $ 482 $ $ 0.260 $ $ 0.120 $ $ 9 $
$ 07:00:00 $ $ 1105 $ $ 556 $ $ 0.276 $ $ 0.139 $ $ 9 $
$ 08:00:00 $ $ 1191 $ $ 610 $ $ 0.297 $ $ 0.152 $ $ 18 $
$ 09:00:00 $ $ 1256 $ $ 704 $ $ 0.314 $ $ 0.176 $ $ 30 $
$ 10:00:00 $ $ 1309 $ $ 744 $ $ 0.327 $ $ 0.186 $ $ 32 $
$ 11:00:00 $ $ 1366 $ $ 775 $ $ 0.341 $ $ 0.193 $ $ 50 $
$ 12:00:00 $ $ 1385 $ $ 793 $ $ 0.346 $ $ 0.198 $ $ 53 $
$ 13:00:00 $ $ 1356 $ $ 774 $ $ 0.339 $ $ 0.193 $ $ 44 $
$ 14:00:00 $ $ 1337 $ $ 759 $ $ 0.334 $ $ 0.189 $ $ 38 $
$ 15:00:00 $ $ 1350 $ $ 774 $ $ 0.337 $ $ 0.193 $ $ 41 $
$ 16:00:00 $ $ 1336 $ $ 773 $ $ 0.334 $ $ 0.193 $ $ 41 $
$ 17:00:00 $ $ 1312 $ $ 749 $ $ 0.328 $ $ 0.187 $ $ 41 $
$ 18:00:00 $ $ 1287 $ $ 687 $ $ 0.321 $ $ 0.171 $ $ 41 $
$ 19:00:00 $ $ 1420 $ $ 683 $ $ 0.355 $ $ 0.170 $ $ 89 $
$ 20:00:00 $ $ 1389 $ $ 660 $ $ 0.351 $ $ 0.167 $ $ 89 $
$ 21:00:00 $ $ 1311 $ $ 605 $ $ 0.327 $ $ 0.151 $ $ 41 $
$ 22:00:00 $ $ 1175 $ $ 544 $ $ 0.293 $ $ 0.136 $ $ 18 $
$ 23:00:00 $ $ 1030 $ $ 489 $ $ 0.257 $ $ 0.122 $ $ 14 $
[1]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[2]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[3]

Jagannathan Gomatam, Isobel McFarlane. Generalisation of the Mandelbrot set to integral functions of quaternions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 107-116. doi: 10.3934/dcds.1999.5.107

[4]

Joseph Bayara, André Conseibo, Artibano Micali, Moussa Ouattara. Derivations in power-associative algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1359-1370. doi: 10.3934/dcdss.2011.4.1359

[5]

Marilena Filippucci, Andrea Tallarico, Michele Dragoni. Simulation of lava flows with power-law rheology. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 677-685. doi: 10.3934/dcdss.2013.6.677

[6]

Guillaume Bal, Eric Bonnetier, François Monard, Faouzi Triki. Inverse diffusion from knowledge of power densities. Inverse Problems & Imaging, 2013, 7 (2) : 353-375. doi: 10.3934/ipi.2013.7.353

[7]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial & Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[8]

Daniel Mckenzie, Steven Damelin. Power weighted shortest paths for clustering Euclidean data. Foundations of Data Science, 2019, 1 (3) : 307-327. doi: 10.3934/fods.2019014

[9]

Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market. Journal of Industrial & Management Optimization, 2020, 16 (2) : 777-793. doi: 10.3934/jimo.2018178

[10]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[11]

Juan Pablo Cárdenas, Gerardo Vidal, Gastón Olivares. Complexity, selectivity and asymmetry in the conformation of the power phenomenon. Analysis of Chilean society. Networks & Heterogeneous Media, 2015, 10 (1) : 167-194. doi: 10.3934/nhm.2015.10.167

[12]

Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005

[13]

E. Fossas-Colet, J.M. Olm-Miras. Asymptotic tracking in DC-to-DC nonlinear power converters. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 295-307. doi: 10.3934/dcdsb.2002.2.295

[14]

David W. Pravica, Michael J. Spurr. Unique summing of formal power series solutions to advanced and delayed differential equations. Conference Publications, 2005, 2005 (Special) : 730-737. doi: 10.3934/proc.2005.2005.730

[15]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[16]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial & Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[17]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[18]

Anibal T. Azevedo, Aurelio R. L. Oliveira, Marcos J. Rider, Secundino Soares. How to efficiently incorporate facts devices in optimal active power flow model. Journal of Industrial & Management Optimization, 2010, 6 (2) : 315-331. doi: 10.3934/jimo.2010.6.315

[19]

Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial & Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783

[20]

Hideo Kubo. On the critical decay and power for semilinear wave equtions in odd space dimensions. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 173-190. doi: 10.3934/dcds.1996.2.173

2018 Impact Factor: 1.008

Article outline

Figures and Tables

[Back to Top]