[1]
|
E. Beretta, G. I. Bischi and F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99-111.
doi: 10.1007/BF00171521.
|
[2]
|
E. Beretta and Y. Takeuchi, Qualitative properties of chemostat equations with time delays: boundedness, local and global asymptotic stability, Differential Equations and Dynamical Systems, 2 (1994), 19-40.
|
[3]
|
G. I. Bischi, Effects of time lags on transient characteristics of a nutrient cycling model, Math. Biosci., 109 (1992), 151-175.
doi: 10.1016/0025-5564(92)90043-V.
|
[4]
|
Y. L. Cai, Y. Kang, M. Banerjee and W. M. Wang, A stochastic epidemic model incorporating media coverage, Commun. Math. Sci., 14 (2016), 893-910.
doi: 10.4310/CMS.2016.v14.n4.a1.
|
[5]
|
F. Campillo, M. Joannides and I. Larramendy-Valverde, Stochastic modeling of the chemostat, Ecol. Model., 222 (2011), 2676-2689.
doi: 10.1016/j.ecolmodel.2011.04.027.
|
[6]
|
J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology, 50 (1969), 188-192.
doi: 10.2307/1934845.
|
[7]
|
R. M. Etoua and C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type Ⅲ, J. Differ. Equ., 249 (2010), 2316-2356.
doi: 10.1016/j.jde.2010.06.021.
|
[8]
|
H. I. Freedman and Y. T. Xu, Models of competition in the chemostat with instantaneous and delayed nutrient recycling, J. Math. Biol., 31 (1993), 513-527.
doi: 10.1007/BF00173890.
|
[9]
|
A. Gray, D. Greenhalgh, L. Hu, X. Mao and J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71 (2011), 876-902.
doi: 10.1137/10081856X.
|
[10]
|
R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.
|
[11]
|
X.-Z. He and S. G. Ruan, Global stability in chemostat-type plankton models with delayed nutrient recycling, J. Math. Biol., 37 (1998), 253-271.
doi: 10.1007/s002850050128.
|
[12]
|
X.-Z. He, S. G. Ruan and H. X. Xia, Global stability in chemostat-type equations with distributed delays, SIAM J. Math. Anal., 29 (1998), 681-696.
doi: 10.1137/S0036141096311101.
|
[13]
|
L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equ., 217 (2005), 26-53.
doi: 10.1016/j.jde.2005.06.017.
|
[14]
|
V. S. Ivlev, Experimental Ecology of the Feeding of Fishes, Yale University Press, New Haven, 1961.
|
[15]
|
D. X. Jia, T. H. Zhang and S. L. Yuan, Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, Int. J. Bifurcat. Chaos, 29 (2019), 1930011.
doi: 10.1142/S0218127419300118.
|
[16]
|
J. Jiang, A. L. Shen, H. Wang and S. L. Yuan, Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates Prorocentrum donghaiense with emphasis on two-stage dynamic process, J. Theor. Biol., 463 (2019), 12-21.
doi: 10.1016/j.jtbi.2018.12.011.
|
[17]
|
D. Li, S. Q. Liu and J. A. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, J. Differ. Equ., 263 (2017), 8873-8915.
doi: 10.1016/j.jde.2017.08.066.
|
[18]
|
M. Liu and M. L. Deng, Permanence and extinction of a stochastic hybrid model for tumor growth, Appl. Math. Lett., 94 (2019), 66-72.
doi: 10.1016/j.aml.2019.02.016.
|
[19]
|
Q. Liu and D. Q. Jiang, Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay, Discrete Contin. Dyn. Syst., 22 (2017), 2479-2500.
doi: 10.3934/dcdsb.2017127.
|
[20]
|
Q. Liu and D. Q. Jiang, Stationary distribution and extinction of a stochastic predator-prey model with distributed delay, Appl. Math. Lett., 78 (2018), 79-87.
doi: 10.1016/j.aml.2017.11.008.
|
[21]
|
Q. Liu, D. Q. Jiang, T. Hayat and A. Alsaedi, Long-time behavior of a stochastic logistic equation withdistributed delay and nonlinear perturbation, Physica A, 508 (2018), 289-304.
doi: 10.1016/j.physa.2018.05.054.
|
[22]
|
Q. Luo and X. R. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69-84.
doi: 10.1016/j.jmaa.2006.12.032.
|
[23]
|
N. MacDonald, Time Lags in Biological Models, Lecture Notes in Biomathematics, 27. Springer-Verlag, Berlin-New York, 1978.
|
[24]
|
X. R. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Series in Mathematics & Applications. Horwood Publishing Limited, Chichester, 1997.
|
[25]
|
R. M. Nisbet and W. S. C. Gurney, Model of material cycling in a closed ecosystem, Nature, 264 (1976), 633-634.
doi: 10.1038/264633a0.
|
[26]
|
S. G. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633-654.
doi: 10.1007/BF00161202.
|
[27]
|
S. G. Ruan, The effect of delays on stability and persistence in plankton models, Nonlinear Analysis, 24 (1995), 575-585.
doi: 10.1016/0362-546X(95)93092-I.
|
[28]
|
S. G. Ruan and X.-Z. He, Global stability in chemostat-type competition models with nutrient recycling, SIAM J. Appl. Math., 58 (1998), 170-192.
doi: 10.1137/S0036139996299248.
|
[29]
|
K. Y. Song, W. B. Ma, S. B. Guo and H. Yan, A class of dynamic models describing microbial flocculant with nutrient competition and metabolic products in wastewater treatment, Adv. Differ. Equ., 2018 (2018), Paper No. 33, 14 pp.
doi: 10.1186/s13662-018-1473-6.
|
[30]
|
W. M. Wang, Y. L. Cai, J. L. Li and Z. J. Gui, Periodic behavior in a FIV model with seasonality as well as environment fluctuations, J. Frankl. Inst., 354 (2017), 7410-7428.
doi: 10.1016/j.jfranklin.2017.08.034.
|
[31]
|
L. Wang and D. Q. Jiang, A note on the stationary distribution of the stochastic chemostat model with general response functions, Appl. Math. Lett., 73 (2017), 22-28.
doi: 10.1016/j.aml.2017.04.029.
|
[32]
|
R. H. Whittaker, Communities and Ecosystems, Macmillan, New York, 1975.
|
[33]
|
G. S. K. Wolkowicz, H. X. Xia and S. G. Ruan, Competition in the chemostat: A distributed delay model and its global asymptotic behavior, SIAM J. Appl. Math., 57 (1997), 1281-1310.
doi: 10.1137/S0036139995289842.
|
[34]
|
G. S. K. Wolkowicz, H. X. Xia and J. H. Wu, Global dynamics of a chemostat competition model with distributed delay, J. Math. Biol., 38 (1999), 285-316.
doi: 10.1007/s002850050150.
|
[35]
|
D. M. Wu, H. Wang and S. L. Yuan, Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins, Math. Biosci. Eng., 16 (2019), 2141-2153.
doi: 10.3934/mbe.2019104.
|
[36]
|
D. Y. Xu, Y. M. Huang and Z. G. Yang, Existence theorems for periodic Markov process and stochastic functional differential equations, Discrete Contin. Dyn. Syst., 24 (2009), 1005-1023.
doi: 10.3934/dcds.2009.24.1005.
|
[37]
|
C. Q. Xu and S. L. Yuan, An analogue of break-even concentration in a simple stochastic chemostat model, Appl. Math. Lett., 48 (2015), 62-68.
doi: 10.1016/j.aml.2015.03.012.
|
[38]
|
C. Q. Xu and S. L. Yuan, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, Math. Biosci., 280 (2016), 1-9.
doi: 10.1016/j.mbs.2016.07.008.
|
[39]
|
C. Q. Xu, S. L. Yuan and T. H. Zhang, Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Anal. Hybrid. Syst., 29 (2018), 373-382.
doi: 10.1016/j.nahs.2018.03.007.
|
[40]
|
X. W. Yu, S. L. Yuan and T. H. Zhang, The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms, Nonlinear Dyn., 91 (2018), 1653-1668.
doi: 10.1007/s11071-017-3971-6.
|
[41]
|
X. W. Yu, S. L. Yuan and T. H. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 359-374.
doi: 10.1016/j.cnsns.2017.11.028.
|
[42]
|
X. W. Yu, S. L. Yuan and T. H. Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal. Hybrid. Syst., 34 (2019), 209-225.
doi: 10.1016/j.nahs.2019.06.005.
|
[43]
|
X. W. Yu, S. L. Yuan and T. H. Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment, Appl. Math. Comput., 347 (2019), 249-264.
doi: 10.1016/j.amc.2018.11.005.
|
[44]
|
S. Q. Zhang, X. Z. Meng, T. Feng and T. H. Zhang, Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects, Nonlinear Anal. Hybrid. Syst., 26 (2017), 19-37.
doi: 10.1016/j.nahs.2017.04.003.
|
[45]
|
S. N. Zhao, S. L. Yuan and H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equ.
doi: 10.1016/j.jde.2019.11.004.
|
[46]
|
Y. Zhao, L. You, D. Burkow and S. L. Yuan, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn., 95 (2019), 1529-1548.
doi: 10.1007/s11071-018-4642-y.
|
[47]
|
Y. Zhao, S. L. Yuan and J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, B. Math. Biol., 77 (2015), 1285-1326.
doi: 10.1007/s11538-015-0086-4.
|
[48]
|
Y. Zhao, S. L. Yuan and T. H. Zhang, Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 266-276.
doi: 10.1016/j.cnsns.2016.08.013.
|
[49]
|
Y. Zhao, S. L. Yuan and T. H. Zhang, The stationary distribution and ergodicity of astochastic phytoplankton allelopathy model under regime switching, Commun. Nonlinear Sci. Numer. Simul., 37 (2016), 131-142.
doi: 10.1016/j.cnsns.2016.01.013.
|