• Previous Article
    Point vortices for inviscid generalized surface quasi-geostrophic models
  • DCDS-B Home
  • This Issue
  • Next Article
    Boundary switch on/off control approach to simultaneous identification of diffusion coefficient and initial state for one-dimensional heat equation
July  2020, 25(7): 2555-2582. doi: 10.3934/dcdsb.2020022

Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms

Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Techniques, College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi 341000, China

* Corresponding author: Li Ma

Received  December 2018 Revised  September 2019 Published  July 2020 Early access  April 2020

Fund Project: The first author is supported by Jiangxi Science and Technology Project (Grant No. GJJ170566) and NSF of China (Grants No. 11801089)

In this paper, we investigate a class of nonlocal dispersal logistic equations with nonlocal terms
$\left\{ {\begin{array}{*{20}{l}}{{u_t} = Du + {u^q}\left( {\lambda + a(x)\int_\Omega b (x){u^p}} \right),}&{{\rm{\quad\quad in\quad\quad}}\Omega \times (0, + \infty ),}\\{u(x,0) = {u_0}(x) \ge 0}&{{\rm{\quad\quad\quad\quad\quad\quad\quad in\quad\quad}}\Omega ,}\\{u = 0,}&{{\rm{ on\quad\quad}}{{\mathbb{R}}^N}\backslash \Omega \times (0, + \infty ),}\end{array}} \right.$
where
$ \Omega\subset \mathbb{R}^N(N\geq1) $
is a bounded domain,
$ \lambda\in \mathbb{R} $
,
$ 0<q\leq1 $
,
$ p>0 $
,
$ a,b\in C(\overline{\Omega}) $
,
$ b\geq0 $
,
$ b\neq0 $
and
$ a $
verifies either
$ a>0 $
or
$ a<0 $
.
$ Du = \int_\Omega J(x-y)u(y,t){\rm{d}}y-u(x,t) $
represents the nonlocal dispersal operators, which is continuous and nonpositive. Under some suitable assumptions we establish the existence, uniqueness or multiplicity and stability of positive stationary solution with nonlocal reaction term by using sub-supersolution methods, Lerray-Schauder degree theory and Lyapunov-Schmidt reduction and so on.
Citation: Li Ma, Youquan Luo. Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2555-2582. doi: 10.3934/dcdsb.2020022
References:
[1]

W. Allegretto and A. Barabanova, Existence of positive solutions of semilinear elliptic equations with nonlocal terms, Funkcialaj Ekvacioj, 40 (1997), 395-409. 

[2]

W. Allegretto and P. Nistri, On a class of nonlocal problems with applications to mathematical biology, Differential Equations with Applications to Biology (Halifax, NS, 1997), 1–14, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.

[3]

D. ArcoyaJ. Carmona and B. Pellacci, Bifurcation for some quasi-linear operators, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 733-765.  doi: 10.1017/S0308210500001086.

[4]

P. BatesP. FifeX. Ren and X. Wang, Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[5]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.

[6]

L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: I. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711. 

[7]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.

[8]

S. S. Chen and J. P. Shi, Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.

[9]

M. Chipot, Remarks on some class of nonlocal elliptic problems, Recent advances of elliptic and parabolic issues, World Scientific, (2006), 79–102.

[10]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operator, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.

[11]

F. J. CorrêaM. Delgado and A. Su$\mathrm{\acute{a}}$rez, Some nonlinear heterogeneous problems with nonlocal reaction term, Adv. in Differential Equations, 16 (2011), 623-641. 

[12]

F. A. Davidson and N. Dodds, Existence of positive solutions due to nonlocal interactions in a class of nonlinear boundary value problems, Methods and Application of Analysis, 14 (2007), 15-27.  doi: 10.4310/MAA.2007.v14.n1.a2.

[13]

B. Fiedler and P. Pol$\mathrm{\acute{a}\check{c}}$ik, Complicated dynamics of scalar reaction diffusion equations with a nonlocal term, Proceedings of The Royal Society of Edinburgh: Section A Mathematics, 115 (1990), 167-192.  doi: 10.1017/S0308210500024641.

[14]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in: Trends in Nonlinear Analysis, Springer, Berlin, 2003,153–191.

[15]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal., 71 (2009), 6116-6121.  doi: 10.1016/j.na.2009.06.004.

[16]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.  doi: 10.3934/cpaa.2009.8.2037.

[17]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.

[18]

S. J. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.

[19]

S. J. Guo and S. J. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.

[20]

S. J. Guo and L. Ma, Stability and Bifurcation in a Delayed Reaction-Diffusion Equation with Dirichlet Boundary Condition, J. Nonlinear Science, 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.

[21]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.  doi: 10.3934/cpaa.2012.11.1699.

[22]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[23]

C. Y. KaoY. Lou and W. Shen, Random dispersal vs nonlocal dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[24]

C. Y. KaoY. Lou and W. Shen, Evolution of mixed dispersal in periodic environment, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.

[25]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.

[26]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[27]

Y. LouW. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.

[28]

L. Ma and S. J. Guo, tability and bifurcation in a diffusive Lotka-Volterra system with delay, Comput. Math. Appl., 72 (2016), 147-177.  doi: 10.1016/j.camwa.2016.04.049.

[29]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.

[30]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.

[31]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[32]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal dispersal in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.

[33]

R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Cambridge University Press, 6 (2003), 11-40.  doi: 10.1017/CBO9780511615740.002.

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.

[35]

J. W. SunF. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.

[36]

J. W. SunW. T. Li and Z. C. Wang, A nonlocal dispersal logistic equation with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.

[37]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.

[38]

Y.-J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.

[39]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.

[40]

E. Zeidler, Applied Functional Analysis, Main Principle and Their Applications, Appl. Math. Sci. 108, Springer-Verlag, New York, 1995.

show all references

References:
[1]

W. Allegretto and A. Barabanova, Existence of positive solutions of semilinear elliptic equations with nonlocal terms, Funkcialaj Ekvacioj, 40 (1997), 395-409. 

[2]

W. Allegretto and P. Nistri, On a class of nonlocal problems with applications to mathematical biology, Differential Equations with Applications to Biology (Halifax, NS, 1997), 1–14, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.

[3]

D. ArcoyaJ. Carmona and B. Pellacci, Bifurcation for some quasi-linear operators, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 733-765.  doi: 10.1017/S0308210500001086.

[4]

P. BatesP. FifeX. Ren and X. Wang, Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.

[5]

P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.  doi: 10.1016/j.jmaa.2006.09.007.

[6]

L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: I. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711. 

[7]

E. ChasseigneM. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation, J. Math. Pures Appl., 86 (2006), 271-291.  doi: 10.1016/j.matpur.2006.04.005.

[8]

S. S. Chen and J. P. Shi, Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.  doi: 10.1016/j.jde.2012.08.031.

[9]

M. Chipot, Remarks on some class of nonlocal elliptic problems, Recent advances of elliptic and parabolic issues, World Scientific, (2006), 79–102.

[10]

J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operator, J. Differential Equations, 249 (2010), 2921-2953.  doi: 10.1016/j.jde.2010.07.003.

[11]

F. J. CorrêaM. Delgado and A. Su$\mathrm{\acute{a}}$rez, Some nonlinear heterogeneous problems with nonlocal reaction term, Adv. in Differential Equations, 16 (2011), 623-641. 

[12]

F. A. Davidson and N. Dodds, Existence of positive solutions due to nonlocal interactions in a class of nonlinear boundary value problems, Methods and Application of Analysis, 14 (2007), 15-27.  doi: 10.4310/MAA.2007.v14.n1.a2.

[13]

B. Fiedler and P. Pol$\mathrm{\acute{a}\check{c}}$ik, Complicated dynamics of scalar reaction diffusion equations with a nonlocal term, Proceedings of The Royal Society of Edinburgh: Section A Mathematics, 115 (1990), 167-192.  doi: 10.1017/S0308210500024641.

[14]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in: Trends in Nonlinear Analysis, Springer, Berlin, 2003,153–191.

[15]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal., 71 (2009), 6116-6121.  doi: 10.1016/j.na.2009.06.004.

[16]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.  doi: 10.3934/cpaa.2009.8.2037.

[17]

J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.  doi: 10.1016/j.jde.2008.04.015.

[18]

S. J. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259 (2015), 1409-1448.  doi: 10.1016/j.jde.2015.03.006.

[19]

S. J. Guo and S. J. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.  doi: 10.1016/j.jde.2015.09.031.

[20]

S. J. Guo and L. Ma, Stability and Bifurcation in a Delayed Reaction-Diffusion Equation with Dirichlet Boundary Condition, J. Nonlinear Science, 26 (2016), 545-580.  doi: 10.1007/s00332-016-9285-x.

[21]

G. HetzerT. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.  doi: 10.3934/cpaa.2012.11.1699.

[22]

V. HutsonS. MartinezK. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.  doi: 10.1007/s00285-003-0210-1.

[23]

C. Y. KaoY. Lou and W. Shen, Random dispersal vs nonlocal dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.  doi: 10.3934/dcds.2010.26.551.

[24]

C. Y. KaoY. Lou and W. Shen, Evolution of mixed dispersal in periodic environment, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.  doi: 10.3934/dcdsb.2012.17.2047.

[25]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.

[26]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.

[27]

Y. LouW. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.  doi: 10.3934/dcds.2004.10.435.

[28]

L. Ma and S. J. Guo, tability and bifurcation in a diffusive Lotka-Volterra system with delay, Comput. Math. Appl., 72 (2016), 147-177.  doi: 10.1016/j.camwa.2016.04.049.

[29]

S. PanW. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.

[30]

N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.  doi: 10.1007/s10884-012-9276-z.

[31]

P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.  doi: 10.1016/0022-1236(71)90030-9.

[32]

W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal dispersal in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.  doi: 10.1090/S0002-9939-2011-11011-6.

[33]

R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Cambridge University Press, 6 (2003), 11-40.  doi: 10.1017/CBO9780511615740.002.

[34]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.

[35]

J. W. SunF. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.  doi: 10.1016/j.jde.2014.05.005.

[36]

J. W. SunW. T. Li and Z. C. Wang, A nonlocal dispersal logistic equation with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.  doi: 10.3934/dcds.2015.35.3217.

[37]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.

[38]

Y.-J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.

[39]

W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.  doi: 10.1016/j.jde.2010.04.012.

[40]

E. Zeidler, Applied Functional Analysis, Main Principle and Their Applications, Appl. Math. Sci. 108, Springer-Verlag, New York, 1995.

[1]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[2]

Shihe Xu, Fangwei Zhang, Meng Bai. Stability of positive steady-state solutions to a time-delayed system with some applications. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021286

[3]

Jian-Wen Sun, Wan-Tong Li, Zhi-Cheng Wang. A nonlocal dispersal logistic equation with spatial degeneracy. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3217-3238. doi: 10.3934/dcds.2015.35.3217

[4]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations and Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[5]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[6]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[7]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[8]

Wan-Tong Li, Li Zhang, Guo-Bao Zhang. Invasion entire solutions in a competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1531-1560. doi: 10.3934/dcds.2015.35.1531

[9]

Carmen Cortázar, Manuel Elgueta, Jorge García-Melián, Salomé Martínez. Finite mass solutions for a nonlocal inhomogeneous dispersal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1409-1419. doi: 10.3934/dcds.2015.35.1409

[10]

Fei-Ying Yang, Wan-Tong Li. Dynamics of a nonlocal dispersal SIS epidemic model. Communications on Pure and Applied Analysis, 2017, 16 (3) : 781-798. doi: 10.3934/cpaa.2017037

[11]

Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2457-2485. doi: 10.3934/dcdsb.2013.18.2457

[12]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[13]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[14]

Luis Caffarelli, Serena Dipierro, Enrico Valdinoci. A logistic equation with nonlocal interactions. Kinetic and Related Models, 2017, 10 (1) : 141-170. doi: 10.3934/krm.2017006

[15]

Jinling Zhou, Yu Yang, Cheng-Hsiung Hsu. Traveling waves for a nonlocal dispersal vaccination model with general incidence. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1469-1495. doi: 10.3934/dcdsb.2019236

[16]

Fei-Ying Yang, Yan Li, Wan-Tong Li, Zhi-Cheng Wang. Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1969-1993. doi: 10.3934/dcdsb.2013.18.1969

[17]

Jingdong Wei, Jiangbo Zhou, Wenxia Chen, Zaili Zhen, Lixin Tian. Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2853-2886. doi: 10.3934/cpaa.2020125

[18]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[19]

Yang Yang, Yun-Rui Yang, Xin-Jun Jiao. Traveling waves for a nonlocal dispersal SIR model equipped delay and generalized incidence. Electronic Research Archive, 2020, 28 (1) : 1-13. doi: 10.3934/era.2020001

[20]

Xiaoli Wang, Guohong Zhang. Bifurcation analysis of a general activator-inhibitor model with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4459-4477. doi: 10.3934/dcdsb.2020295

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (283)
  • HTML views (138)
  • Cited by (1)

Other articles
by authors

[Back to Top]