In this paper, we investigate a class of nonlocal dispersal logistic equations with nonlocal terms
$\left\{ {\begin{array}{*{20}{l}}{{u_t} = Du + {u^q}\left( {\lambda + a(x)\int_\Omega b (x){u^p}} \right),}&{{\rm{\quad\quad in\quad\quad}}\Omega \times (0, + \infty ),}\\{u(x,0) = {u_0}(x) \ge 0}&{{\rm{\quad\quad\quad\quad\quad\quad\quad in\quad\quad}}\Omega ,}\\{u = 0,}&{{\rm{ on\quad\quad}}{{\mathbb{R}}^N}\backslash \Omega \times (0, + \infty ),}\end{array}} \right.$
where $ \Omega\subset \mathbb{R}^N(N\geq1) $ is a bounded domain, $ \lambda\in \mathbb{R} $, $ 0<q\leq1 $, $ p>0 $, $ a,b\in C(\overline{\Omega}) $, $ b\geq0 $, $ b\neq0 $ and $ a $ verifies either $ a>0 $ or $ a<0 $. $ Du = \int_\Omega J(x-y)u(y,t){\rm{d}}y-u(x,t) $ represents the nonlocal dispersal operators, which is continuous and nonpositive. Under some suitable assumptions we establish the existence, uniqueness or multiplicity and stability of positive stationary solution with nonlocal reaction term by using sub-supersolution methods, Lerray-Schauder degree theory and Lyapunov-Schmidt reduction and so on.
Citation: |
[1] |
W. Allegretto and A. Barabanova, Existence of positive solutions of semilinear elliptic equations with nonlocal terms, Funkcialaj Ekvacioj, 40 (1997), 395-409.
![]() ![]() |
[2] |
W. Allegretto and P. Nistri, On a class of nonlocal problems with applications to mathematical biology, Differential Equations with Applications to Biology (Halifax, NS, 1997), 1–14, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.
![]() ![]() |
[3] |
D. Arcoya, J. Carmona and B. Pellacci, Bifurcation for some quasi-linear operators, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 733-765.
doi: 10.1017/S0308210500001086.![]() ![]() ![]() |
[4] |
P. Bates, P. Fife, X. Ren and X. Wang, Travelling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.
doi: 10.1007/s002050050037.![]() ![]() ![]() |
[5] |
P. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal, J. Math. Anal. Appl., 332 (2007), 428-440.
doi: 10.1016/j.jmaa.2006.09.007.![]() ![]() ![]() |
[6] |
L. C. Birch, Experimental background to the study of the distribution and aboundance of insects: I. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles, Ecology, 34 (1953), 698-711.
![]() |
[7] |
E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equation, J. Math. Pures Appl., 86 (2006), 271-291.
doi: 10.1016/j.matpur.2006.04.005.![]() ![]() ![]() |
[8] |
S. S. Chen and J. P. Shi, Stability and hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differential Equations, 253 (2012), 3440-3470.
doi: 10.1016/j.jde.2012.08.031.![]() ![]() ![]() |
[9] |
M. Chipot, Remarks on some class of nonlocal elliptic problems, Recent advances of elliptic and parabolic issues, World Scientific, (2006), 79–102.
![]() |
[10] |
J. Coville, On a simple criterion for the existence of a principal eigenfunction of some nonlocal operator, J. Differential Equations, 249 (2010), 2921-2953.
doi: 10.1016/j.jde.2010.07.003.![]() ![]() ![]() |
[11] |
F. J. Corrêa, M. Delgado and A. Su$\mathrm{\acute{a}}$rez, Some nonlinear heterogeneous problems with nonlocal reaction term, Adv. in Differential Equations, 16 (2011), 623-641.
![]() ![]() |
[12] |
F. A. Davidson and N. Dodds, Existence of positive solutions due to nonlocal interactions in a class of nonlinear boundary value problems, Methods and Application of Analysis, 14 (2007), 15-27.
doi: 10.4310/MAA.2007.v14.n1.a2.![]() ![]() ![]() |
[13] |
B. Fiedler and P. Pol$\mathrm{\acute{a}\check{c}}$ik, Complicated dynamics of scalar reaction diffusion equations with a nonlocal term, Proceedings of The Royal Society of Edinburgh: Section A Mathematics, 115 (1990), 167-192.
doi: 10.1017/S0308210500024641.![]() ![]() ![]() |
[14] |
P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in: Trends in Nonlinear Analysis, Springer, Berlin, 2003,153–191.
![]() ![]() |
[15] |
J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, Maximum and antimaximum principles for some nonlocal diffusion operators, Nonlinear Anal., 71 (2009), 6116-6121.
doi: 10.1016/j.na.2009.06.004.![]() ![]() ![]() |
[16] |
J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, A logistic equation with refuge and nonlocal diffusion, Commun. Pure Appl. Anal., 8 (2009), 2037-2053.
doi: 10.3934/cpaa.2009.8.2037.![]() ![]() ![]() |
[17] |
J. Garc$\mathrm{\acute{i}}$a-Meli$\mathrm{\acute{a}}$n and J. D. Rossi, On the principal eigenvalue of some nonlocal diffusion problems, J. Differential Equations, 246 (2009), 21-38.
doi: 10.1016/j.jde.2008.04.015.![]() ![]() ![]() |
[18] |
S. J. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differential Equations, 259 (2015), 1409-1448.
doi: 10.1016/j.jde.2015.03.006.![]() ![]() ![]() |
[19] |
S. J. Guo and S. J. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differential Equations, 260 (2016), 781-817.
doi: 10.1016/j.jde.2015.09.031.![]() ![]() ![]() |
[20] |
S. J. Guo and L. Ma, Stability and Bifurcation in a Delayed Reaction-Diffusion Equation with Dirichlet Boundary Condition, J. Nonlinear Science, 26 (2016), 545-580.
doi: 10.1007/s00332-016-9285-x.![]() ![]() ![]() |
[21] |
G. Hetzer, T. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.
doi: 10.3934/cpaa.2012.11.1699.![]() ![]() ![]() |
[22] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.
doi: 10.1007/s00285-003-0210-1.![]() ![]() ![]() |
[23] |
C. Y. Kao, Y. Lou and W. Shen, Random dispersal vs nonlocal dispersal, Discrete Contin. Dyn. Syst., 26 (2010), 551-596.
doi: 10.3934/dcds.2010.26.551.![]() ![]() ![]() |
[24] |
C. Y. Kao, Y. Lou and W. Shen, Evolution of mixed dispersal in periodic environment, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047-2072.
doi: 10.3934/dcdsb.2012.17.2047.![]() ![]() ![]() |
[25] |
W. T. Li, Y. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.
doi: 10.1016/j.nonrwa.2009.07.005.![]() ![]() ![]() |
[26] |
Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.
doi: 10.1006/jdeq.1996.0157.![]() ![]() ![]() |
[27] |
Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435-458.
doi: 10.3934/dcds.2004.10.435.![]() ![]() ![]() |
[28] |
L. Ma and S. J. Guo, tability and bifurcation in a diffusive Lotka-Volterra system with delay, Comput. Math. Appl., 72 (2016), 147-177.
doi: 10.1016/j.camwa.2016.04.049.![]() ![]() ![]() |
[29] |
S. Pan, W. T. Li and G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.
doi: 10.1007/s00033-007-7005-y.![]() ![]() ![]() |
[30] |
N. Rawal and W. Shen, Criteria for the existence and lower bounds of principal eigenvalues of time periodic nonlocal dispersal operators and applications, J. Dynam. Differential Equations, 24 (2012), 927-954.
doi: 10.1007/s10884-012-9276-z.![]() ![]() ![]() |
[31] |
P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9.![]() ![]() ![]() |
[32] |
W. Shen and A. Zhang, Stationary solutions and spreading speeds of nonlocal dispersal in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), 1681-1696.
doi: 10.1090/S0002-9939-2011-11011-6.![]() ![]() ![]() |
[33] |
R. M. Sibly and J. Hone, Population growth rate and its determinants: An overview, Cambridge University Press, 6 (2003), 11-40.
doi: 10.1017/CBO9780511615740.002.![]() ![]() |
[34] |
J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983.
![]() ![]() |
[35] |
J. W. Sun, F. Y. Yang and W. T. Li, A nonlocal dispersal equation arising from a selection-migration model in genetics, J. Differential Equations, 257 (2014), 1372-1402.
doi: 10.1016/j.jde.2014.05.005.![]() ![]() ![]() |
[36] |
J. W. Sun, W. T. Li and Z. C. Wang, A nonlocal dispersal logistic equation with spatial degeneracy, Discrete Contin. Dyn. Syst., 35 (2015), 3217-3238.
doi: 10.3934/dcds.2015.35.3217.![]() ![]() ![]() |
[37] |
L. Sun, J. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.
doi: 10.1007/s00033-012-0286-9.![]() ![]() ![]() |
[38] |
Y.-J. Sun, W. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.
doi: 10.1016/j.jde.2011.04.020.![]() ![]() ![]() |
[39] |
W. Shen and A. Zhang, Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249 (2010), 747-795.
doi: 10.1016/j.jde.2010.04.012.![]() ![]() ![]() |
[40] |
E. Zeidler, Applied Functional Analysis, Main Principle and Their Applications, Appl. Math. Sci. 108, Springer-Verlag, New York, 1995.
![]() ![]() |