July  2020, 25(7): 2583-2606. doi: 10.3934/dcdsb.2020023

Point vortices for inviscid generalized surface quasi-geostrophic models

1. 

School of Mathematics and Statistics, The University of Sheffield, Hounsfield Rd, Sheffield S3 7RH, United Kingdom

2. 

Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, I–56127 Pisa, Italia

Carina Geldhauser, http://www.cgeldhauser.de
Marco Romito, http://people.dm.unipi.it/romito

Received  January 2019 Published  April 2020

Fund Project: The first author was supported by Deutsche Forschungsgemeinschaft in the context of TU Dresden's Institutional Strategy "The Synergetic University". The second author acknowledges the partial support of the University of Pisa, through project PRA 2018_49

We give a rigorous proof of the validity of the point vortex description for a class of inviscid generalized surface quasi-geostrophic models on the whole plane.

Citation: Carina Geldhauser, Marco Romito. Point vortices for inviscid generalized surface quasi-geostrophic models. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2583-2606. doi: 10.3934/dcdsb.2020023
References:
[1]

G. Badin and A. M. Barry, Collapse of generalized Euler and surface quasi-geostrophic point vortices, Phys. Rev. E, 98 (2018), 023110. doi: 10.1103/PhysRevE.98.023110.  Google Scholar

[2]

D. BernardG. BoffettaA. Celani and G. Falkovich, Conformal invariance in two-dimensional turbulence, Nature Physics, 2 (2006), 124-128.  doi: 10.1038/nphys217.  Google Scholar

[3]

D. Bernard, G. Boffetta, A. Celani and G. Falkovich, Inverse turbulent cascades and conformally invariant curves, Physical Review Letters, 98 (2007), 024501. doi: 10.1103/PhysRevLett.98.024501.  Google Scholar

[4]

T. Bodineau and A. Guionnet, About the stationary states of vortex systems, Ann. Inst. H. Poincaré Probab. Statist., 35 (1999), 205-237.  doi: 10.1016/S0246-0203(99)80011-9.  Google Scholar

[5]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[6]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[7]

G. CavallaroR. Garra and C. Marchioro, Localization and stability of active scalar flows, Riv. Math. Univ. Parma (N.S.), 4 (2013), 175-196.   Google Scholar

[8]

D. ChaeP. ConstantinD. CórdobaF. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math., 65 (2012), 1037-1066.  doi: 10.1002/cpa.21390.  Google Scholar

[9]

D. ChaeP. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62.  doi: 10.1007/s00205-011-0411-5.  Google Scholar

[10]

D. ChaeP. Constantin and J. Wu, Dissipative models generalizing the 2D Navier-Stokes and surface quasi-geostrophic equations, Indiana Univ. Math. J., 61 (2012), 1997-2018.  doi: 10.1512/iumj.2012.61.4756.  Google Scholar

[11]

P. Constantin, D. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50 (2001), 97–107, Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[12]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

D. CórdobaC. Fefferman and J. L. Rodrigo, Almost sharp fronts for the surface quasi-geostrophic equation, Proc. Natl. Acad. Sci. USA, 101 (2004), 2687-2691.  doi: 10.1073/pnas.0308154101.  Google Scholar

[15]

D. CórdobaM. A. FontelosA. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA, 102 (2005), 5949-5952.  doi: 10.1073/pnas.0501977102.  Google Scholar

[16]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[17]

J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553-586.  doi: 10.1090/S0894-0347-1991-1102579-6.  Google Scholar

[18]

G. Falkovich, Symmetries of the turbulent state, J. Phys. A, 42 (2009), 123001, 18pp. doi: 10.1088/1751-8113/42/12/123001.  Google Scholar

[19]

F. Flandoli and M. Saal, mSQG equations in distributional spaces and point vortex approximation, J. Evol. Equat., 19 (2019), 1071-1090.  doi: 10.1007/s00028-019-00506-8.  Google Scholar

[20]

C. Geldhauser and M. Romito, Limit theorems and fluctuations for point vortices of generalized Euler equations, 2018, arXiv: 1810.12706. Google Scholar

[21]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384.  doi: 10.1142/S0218202509003814.  Google Scholar

[22]

I. M. HeldR. T. PierrehumbertS. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, Journal of Fluid Mechanics, 282 (1995), 1-20.  doi: 10.1017/S0022112095000012.  Google Scholar

[23]

I. M. Held, R. T. Pierrehumbert and S. K. L., Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons & Fractals, 4 (1994), 1111–1116, Special Issue: Chaos Applied to Fluid Mixing. Google Scholar

[24]

A. KiselevL. RyzhikY. Yao and A. Zlatoš, Finite time singularity for the modified SQG patch equation, Ann. of Math, 184 (2016), 909-948.  doi: 10.4007/annals.2016.184.3.7.  Google Scholar

[25]

P.-L. Lions, On Euler Equations and Statistical Physics, Cattedra Galileiana. [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, 1998.  Google Scholar

[26]

F. Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces $L^p$ or $\dot H^{-1/2}$, Comm. Math. Phys., 277 (2008), 45-67.  doi: 10.1007/s00220-007-0356-6.  Google Scholar

[27]

C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys., 84 (1982), 483-503.  doi: 10.1007/BF01209630.  Google Scholar

[28]

C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, vol. 203 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1984.  Google Scholar

[29]

C. Marchioro and M. Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys., 154 (1993), 49-61.  doi: 10.1007/BF02096831.  Google Scholar

[30]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[31]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.)–The University of Chicago.  Google Scholar

[32]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Comm. Pure Appl. Math., 58 (2005), 821-866.  doi: 10.1002/cpa.20059.  Google Scholar

[33]

S. Schochet, The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation, Comm. Partial Differential Equations, 20 (1995), 1077-1104.  doi: 10.1080/03605309508821124.  Google Scholar

[34]

S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., 49 (1996), 911-965.  doi: 10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A.  Google Scholar

[35]

N. Schorghofer, Energy spectra of steady two-dimensional turbulent flows, Phys. Rev. E, 61 (2000), 6572-6577.  doi: 10.1103/PhysRevE.61.6572.  Google Scholar

[36]

C. V. Tran, Nonlinear transfer and spectral distribution of energy in $\alpha$ turbulence, Phys. D, 191 (2004), 137-155.  doi: 10.1016/j.physd.2003.11.005.  Google Scholar

[37]

C. V. Tran, D. G. Dritschel and R. K. Scott, Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence, Phys. Rev. E, 81 (2010), 016301. doi: 10.1103/PhysRevE.81.016301.  Google Scholar

[38]

A. Venaille, T. Dauxois and S. Ruffo, Violent relaxation in two-dimensional flows with varying interaction range, Phys. Rev. E, 92 (2015), 011001. doi: 10.1103/PhysRevE.92.011001.  Google Scholar

show all references

References:
[1]

G. Badin and A. M. Barry, Collapse of generalized Euler and surface quasi-geostrophic point vortices, Phys. Rev. E, 98 (2018), 023110. doi: 10.1103/PhysRevE.98.023110.  Google Scholar

[2]

D. BernardG. BoffettaA. Celani and G. Falkovich, Conformal invariance in two-dimensional turbulence, Nature Physics, 2 (2006), 124-128.  doi: 10.1038/nphys217.  Google Scholar

[3]

D. Bernard, G. Boffetta, A. Celani and G. Falkovich, Inverse turbulent cascades and conformally invariant curves, Physical Review Letters, 98 (2007), 024501. doi: 10.1103/PhysRevLett.98.024501.  Google Scholar

[4]

T. Bodineau and A. Guionnet, About the stationary states of vortex systems, Ann. Inst. H. Poincaré Probab. Statist., 35 (1999), 205-237.  doi: 10.1016/S0246-0203(99)80011-9.  Google Scholar

[5]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[6]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[7]

G. CavallaroR. Garra and C. Marchioro, Localization and stability of active scalar flows, Riv. Math. Univ. Parma (N.S.), 4 (2013), 175-196.   Google Scholar

[8]

D. ChaeP. ConstantinD. CórdobaF. Gancedo and J. Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math., 65 (2012), 1037-1066.  doi: 10.1002/cpa.21390.  Google Scholar

[9]

D. ChaeP. Constantin and J. Wu, Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., 202 (2011), 35-62.  doi: 10.1007/s00205-011-0411-5.  Google Scholar

[10]

D. ChaeP. Constantin and J. Wu, Dissipative models generalizing the 2D Navier-Stokes and surface quasi-geostrophic equations, Indiana Univ. Math. J., 61 (2012), 1997-2018.  doi: 10.1512/iumj.2012.61.4756.  Google Scholar

[11]

P. Constantin, D. Cordoba and J. Wu, On the critical dissipative quasi-geostrophic equation, Indiana Univ. Math. J., 50 (2001), 97–107, Dedicated to Professors Ciprian Foias and Roger Temam (Bloomington, IN, 2000). doi: 10.1512/iumj.2001.50.2153.  Google Scholar

[12]

P. ConstantinA. J. Majda and E. Tabak, Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, 7 (1994), 1495-1533.  doi: 10.1088/0951-7715/7/6/001.  Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

D. CórdobaC. Fefferman and J. L. Rodrigo, Almost sharp fronts for the surface quasi-geostrophic equation, Proc. Natl. Acad. Sci. USA, 101 (2004), 2687-2691.  doi: 10.1073/pnas.0308154101.  Google Scholar

[15]

D. CórdobaM. A. FontelosA. M. Mancho and J. L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA, 102 (2005), 5949-5952.  doi: 10.1073/pnas.0501977102.  Google Scholar

[16]

D. CórdobaJ. Gómez-Serrano and A. D. Ionescu, Global solutions for the generalized SQG patch equation, Arch. Ration. Mech. Anal., 233 (2019), 1211-1251.  doi: 10.1007/s00205-019-01377-6.  Google Scholar

[17]

J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553-586.  doi: 10.1090/S0894-0347-1991-1102579-6.  Google Scholar

[18]

G. Falkovich, Symmetries of the turbulent state, J. Phys. A, 42 (2009), 123001, 18pp. doi: 10.1088/1751-8113/42/12/123001.  Google Scholar

[19]

F. Flandoli and M. Saal, mSQG equations in distributional spaces and point vortex approximation, J. Evol. Equat., 19 (2019), 1071-1090.  doi: 10.1007/s00028-019-00506-8.  Google Scholar

[20]

C. Geldhauser and M. Romito, Limit theorems and fluctuations for point vortices of generalized Euler equations, 2018, arXiv: 1810.12706. Google Scholar

[21]

M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., 19 (2009), 1357-1384.  doi: 10.1142/S0218202509003814.  Google Scholar

[22]

I. M. HeldR. T. PierrehumbertS. T. Garner and K. L. Swanson, Surface quasi-geostrophic dynamics, Journal of Fluid Mechanics, 282 (1995), 1-20.  doi: 10.1017/S0022112095000012.  Google Scholar

[23]

I. M. Held, R. T. Pierrehumbert and S. K. L., Spectra of local and nonlocal two-dimensional turbulence, Chaos, Solitons & Fractals, 4 (1994), 1111–1116, Special Issue: Chaos Applied to Fluid Mixing. Google Scholar

[24]

A. KiselevL. RyzhikY. Yao and A. Zlatoš, Finite time singularity for the modified SQG patch equation, Ann. of Math, 184 (2016), 909-948.  doi: 10.4007/annals.2016.184.3.7.  Google Scholar

[25]

P.-L. Lions, On Euler Equations and Statistical Physics, Cattedra Galileiana. [Galileo Chair], Scuola Normale Superiore, Classe di Scienze, Pisa, 1998.  Google Scholar

[26]

F. Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces $L^p$ or $\dot H^{-1/2}$, Comm. Math. Phys., 277 (2008), 45-67.  doi: 10.1007/s00220-007-0356-6.  Google Scholar

[27]

C. Marchioro and M. Pulvirenti, Hydrodynamics in two dimensions and vortex theory, Comm. Math. Phys., 84 (1982), 483-503.  doi: 10.1007/BF01209630.  Google Scholar

[28]

C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynamics, vol. 203 of Lecture Notes in Physics, Springer-Verlag, Berlin, 1984.  Google Scholar

[29]

C. Marchioro and M. Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys., 154 (1993), 49-61.  doi: 10.1007/BF02096831.  Google Scholar

[30]

C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, vol. 96 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-4284-0.  Google Scholar

[31]

S. G. Resnick, Dynamical Problems in Non-Linear Advective Partial Differential Equations, ProQuest LLC, Ann Arbor, MI, 1995, Thesis (Ph.D.)–The University of Chicago.  Google Scholar

[32]

J. L. Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Comm. Pure Appl. Math., 58 (2005), 821-866.  doi: 10.1002/cpa.20059.  Google Scholar

[33]

S. Schochet, The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation, Comm. Partial Differential Equations, 20 (1995), 1077-1104.  doi: 10.1080/03605309508821124.  Google Scholar

[34]

S. Schochet, The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., 49 (1996), 911-965.  doi: 10.1002/(SICI)1097-0312(199609)49:9<911::AID-CPA2>3.0.CO;2-A.  Google Scholar

[35]

N. Schorghofer, Energy spectra of steady two-dimensional turbulent flows, Phys. Rev. E, 61 (2000), 6572-6577.  doi: 10.1103/PhysRevE.61.6572.  Google Scholar

[36]

C. V. Tran, Nonlinear transfer and spectral distribution of energy in $\alpha$ turbulence, Phys. D, 191 (2004), 137-155.  doi: 10.1016/j.physd.2003.11.005.  Google Scholar

[37]

C. V. Tran, D. G. Dritschel and R. K. Scott, Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence, Phys. Rev. E, 81 (2010), 016301. doi: 10.1103/PhysRevE.81.016301.  Google Scholar

[38]

A. Venaille, T. Dauxois and S. Ruffo, Violent relaxation in two-dimensional flows with varying interaction range, Phys. Rev. E, 92 (2015), 011001. doi: 10.1103/PhysRevE.92.011001.  Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[3]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[4]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[5]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[6]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[7]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[8]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[9]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[10]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[13]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[14]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[15]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[16]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[17]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[19]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[20]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]