
-
Previous Article
The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem
- DCDS-B Home
- This Issue
-
Next Article
Point vortices for inviscid generalized surface quasi-geostrophic models
On the stability and transition of the Cahn-Hilliard/Allen-Cahn system
a. | Department of Mathematics, Sichuan University, Chengdu 610065, China |
b. | School of Data Sciences, Zhejiang University of Finance & Economics, Hangzhou 310018, China |
In this paper, the main objective is to study the stability and transition of the Cahn-Hilliard/Allen-Cahn system. By using the dynamic transition theory, combining with the spectral theorem for general linear completely continuous fields, we prove that the system undergoes a continuous transition and bifurcates from a trivial solution to an attractor as the control parameter crosses a certain critical value. In addition, for some special cases, i.e., the domain is $ n $-dimensional box $ (n = 1,2,3) $, we not only obtain the stability of the singular points of the attractors, the topological structure of the attractors is also illustrated.
References:
[1] |
D. Brochet, D. Hilhorst and A. Novick-Cohen,
Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 7 (1994), 83-87.
doi: 10.1016/0893-9659(94)90118-X. |
[2] |
J. Cahn and A. Novick-Cohen,
Evolution equations for phase separation and ordering in binary alloys, J. Statist. Phys., 76 (1994), 877-909.
doi: 10.1007/BF02188691. |
[3] |
H. Chan and J. Wei,
Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.
doi: 10.1016/j.jde.2016.12.010. |
[4] |
P. Frank and J. Wei,
Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, Journal of Functional Analysis, 264 (2013), 1131-1167.
doi: 10.1016/j.jfa.2012.03.010. |
[5] |
M. Gokieli and A. Ito,
Global attractor for the Cahn-Hilliard/Allen-Cahn system, Nonlinear Analysis, 52 (2003), 1821-1841.
doi: 10.1016/S0362-546X(02)00303-6. |
[6] |
M. Gokieli and L. Marcinkowski, Modelling phase transitions in alloys, Nonlinear Analysis, 63 (2005), e1143–e1153.
doi: 10.1016/j.na.2005.03.090. |
[7] |
M. Kubo,
The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Analysis, 75 (2012), 5672-5685.
doi: 10.1016/j.na.2012.05.015. |
[8] |
C. Laurence and M. Alain,
Finite-dimensional attractors for a model of Allen-Cahn equation based on a microforce balance, Comptes Rendus de l' Academie des Sciences-Series I-Mathematics, 329 (1999), 1109-1114.
doi: 10.1016/S0764-4442(00)88483-9. |
[9] |
S. Li and D. Yan,
On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3077-3088.
|
[10] |
D. Li and C. Zhong,
Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations, 149 (1998), 191-210.
doi: 10.1006/jdeq.1998.3429. |
[11] |
H. Liu, T. Sengul and S. Wang, Dynamic transitions for quasilinear systems and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31 pp.
doi: 10.1063/1.3687414. |
[12] |
H. Liu, T. Sengul, S. Wang and P. Zhang,
Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.
doi: 10.4310/CMS.2015.v13.n5.a10. |
[13] |
T. Ma and S. Wang, Phase Transition Dynamics,, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[14] |
T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific, Singapore, 2005.
doi: 10.1142/5798. |
[15] |
T. Ma and S. Wang,
Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784.
doi: 10.3934/dcdsb.2009.11.741. |
[16] |
A. Novick-Cohen,
Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Physica D, 137 (2000), 1-24.
doi: 10.1016/S0167-2789(99)00162-1. |
[17] |
L. Song, Y. Zhang and T. Ma,
Global attractor of the Cahn-Hilliard equation in $\text{H}^k$ spaces, J. Math. Anal. Appl., 355 (2009), 53-62.
doi: 10.1016/j.jmaa.2009.01.035. |
show all references
References:
[1] |
D. Brochet, D. Hilhorst and A. Novick-Cohen,
Finite-dimensional exponential attractor for a model for order-disorder and phase separation, Appl. Math. Lett., 7 (1994), 83-87.
doi: 10.1016/0893-9659(94)90118-X. |
[2] |
J. Cahn and A. Novick-Cohen,
Evolution equations for phase separation and ordering in binary alloys, J. Statist. Phys., 76 (1994), 877-909.
doi: 10.1007/BF02188691. |
[3] |
H. Chan and J. Wei,
Traveling wave solutions for bistable fractional Allen-Cahn equations with a pyramidal front, J. Differential Equations, 262 (2017), 4567-4609.
doi: 10.1016/j.jde.2016.12.010. |
[4] |
P. Frank and J. Wei,
Stable solutions of the Allen-Cahn equation in dimension 8 and minimal cones, Journal of Functional Analysis, 264 (2013), 1131-1167.
doi: 10.1016/j.jfa.2012.03.010. |
[5] |
M. Gokieli and A. Ito,
Global attractor for the Cahn-Hilliard/Allen-Cahn system, Nonlinear Analysis, 52 (2003), 1821-1841.
doi: 10.1016/S0362-546X(02)00303-6. |
[6] |
M. Gokieli and L. Marcinkowski, Modelling phase transitions in alloys, Nonlinear Analysis, 63 (2005), e1143–e1153.
doi: 10.1016/j.na.2005.03.090. |
[7] |
M. Kubo,
The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Analysis, 75 (2012), 5672-5685.
doi: 10.1016/j.na.2012.05.015. |
[8] |
C. Laurence and M. Alain,
Finite-dimensional attractors for a model of Allen-Cahn equation based on a microforce balance, Comptes Rendus de l' Academie des Sciences-Series I-Mathematics, 329 (1999), 1109-1114.
doi: 10.1016/S0764-4442(00)88483-9. |
[9] |
S. Li and D. Yan,
On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 3077-3088.
|
[10] |
D. Li and C. Zhong,
Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations, 149 (1998), 191-210.
doi: 10.1006/jdeq.1998.3429. |
[11] |
H. Liu, T. Sengul and S. Wang, Dynamic transitions for quasilinear systems and Cahn-Hilliard equation with onsager mobility, J. Math. Phys., 53 (2012), 023518, 31 pp.
doi: 10.1063/1.3687414. |
[12] |
H. Liu, T. Sengul, S. Wang and P. Zhang,
Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions, Commun. Math. Sci., 13 (2015), 1289-1315.
doi: 10.4310/CMS.2015.v13.n5.a10. |
[13] |
T. Ma and S. Wang, Phase Transition Dynamics,, Springer-Verlag, New York, 2014.
doi: 10.1007/978-1-4614-8963-4. |
[14] |
T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific, Singapore, 2005.
doi: 10.1142/5798. |
[15] |
T. Ma and S. Wang,
Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784.
doi: 10.3934/dcdsb.2009.11.741. |
[16] |
A. Novick-Cohen,
Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Physica D, 137 (2000), 1-24.
doi: 10.1016/S0167-2789(99)00162-1. |
[17] |
L. Song, Y. Zhang and T. Ma,
Global attractor of the Cahn-Hilliard equation in $\text{H}^k$ spaces, J. Math. Anal. Appl., 355 (2009), 53-62.
doi: 10.1016/j.jmaa.2009.01.035. |



[1] |
Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301 |
[2] |
Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 |
[3] |
Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 |
[4] |
Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127 |
[5] |
Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669 |
[6] |
Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3633-3651. doi: 10.3934/dcdsb.2018308 |
[7] |
Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 |
[8] |
Irena Pawłow. Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1169-1191. doi: 10.3934/dcds.2006.15.1169 |
[9] |
Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027 |
[10] |
Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517 |
[11] |
Juan Wen, Yaling He, Yinnian He, Kun Wang. Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1873-1894. doi: 10.3934/cpaa.2021074 |
[12] |
Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319 |
[13] |
Zhuoran Du, Baishun Lai. Transition layers for an inhomogeneous Allen-Cahn equation in Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1407-1429. doi: 10.3934/dcds.2013.33.1407 |
[14] |
Makoto Okumura, Takeshi Fukao, Daisuke Furihata, Shuji Yoshikawa. A second-order accurate structure-preserving scheme for the Cahn-Hilliard equation with a dynamic boundary condition. Communications on Pure and Applied Analysis, 2022, 21 (2) : 355-392. doi: 10.3934/cpaa.2021181 |
[15] |
Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205 |
[16] |
Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Phase transition and separation in compressible Cahn-Hilliard fluids. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 73-88. doi: 10.3934/dcdsb.2014.19.73 |
[17] |
Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741 |
[18] |
Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125 |
[19] |
Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 |
[20] |
Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]