• Previous Article
    Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy
  • DCDS-B Home
  • This Issue
  • Next Article
    On the stability and transition of the Cahn-Hilliard/Allen-Cahn system
July  2020, 25(7): 2621-2637. doi: 10.3934/dcdsb.2020025

The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem

School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, China

Received  February 2019 Revised  September 2019 Published  April 2020

In this paper we study the asymptotic behaviour of the first eigenvalues $ \lambda^{1}_{p_{n}(\cdot)} $ and the corresponding eigenfunctions $ u_{n} $ of (1) as $ p_{n}(x)\rightarrow \infty $. Under adequate hypotheses on the sequence $ p_{n} $, we prove that $ \lambda^{1}_{p_{n}(\cdot)} $ converges to 1 and the positive first eigenfunctions $ u_{n} $, normalized by $ |u_{n}|_{L^{p_{n}(x)}(\partial \Omega)} = 1 $, converge, up to subsequences, to $ u_{\infty} $ uniformly in $ C^{\alpha}(\overline{\Omega}) $, for some $ 0<\alpha<1 $, where $ u_{\infty} $ is a nontrivial viscosity solution of a problem involving the $ \infty $-Laplacian subject to appropriate boundary conditions.

Citation: Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025
References:
[1]

F. Abdullayev and M. Bocea, The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.  doi: 10.1016/j.na.2013.06.005.  Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.  doi: 10.1007/s002050100117.  Google Scholar

[3]

G. Barles, Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.  doi: 10.1006/jdeq.1993.1100.  Google Scholar

[4]

M. Bocea and M. Mihǎilescu, The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.  doi: 10.1016/j.bulsci.2013.06.001.  Google Scholar

[5]

M. Bocea and M. Mihǎilescu, $\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.  doi: 10.1016/j.na.2010.03.004.  Google Scholar

[6]

Y. M. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[7]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

S. G. Deng, Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.  doi: 10.1016/j.jmaa.2007.07.028.  Google Scholar

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[10]

D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.  doi: 10.4064/sm-143-3-267-293.  Google Scholar

[11]

X. L. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.  doi: 10.1016/j.na.2004.07.009.  Google Scholar

[12]

X. L. FanJ. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[13]

X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[14]

X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.)  Google Scholar

[15]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.  doi: 10.1016/j.na.2013.02.011.  Google Scholar

[16]

N. FukagaiM. Ito and K. Narukawa, Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206.   Google Scholar

[17]

P. HarjulehtoP. HästöÚ. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[18]

P. JuutinenP. Lindqvist and J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.  doi: 10.1007/s002050050157.  Google Scholar

[19]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618.   Google Scholar

[20]

A. Lê, On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9.   Google Scholar

[21]

P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006.  Google Scholar

[22]

P. Lindqvist and T. Lukkari, A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421.   Google Scholar

[23]

J. J. ManfrediJ. D. Rossi and J. M. Urbano, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.  doi: 10.1016/j.na.2009.06.054.  Google Scholar

[24]

J. J. ManfrediJ. D. Rossi and J. M. Urbano, $p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.  doi: 10.1016/j.anihpc.2009.09.008.  Google Scholar

[25]

J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.  Google Scholar

[26]

M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. doi: 10.1090/conm/540/10665.  Google Scholar

[27]

M. Pérez-Llanos and J. D. Rossi, The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.  doi: 10.1016/j.jmaa.2009.09.044.  Google Scholar

[28]

M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[29]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66.   Google Scholar

[30]

V. V. Zhikov, On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.   Google Scholar

show all references

References:
[1]

F. Abdullayev and M. Bocea, The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.  doi: 10.1016/j.na.2013.06.005.  Google Scholar

[2]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.  doi: 10.1007/s002050100117.  Google Scholar

[3]

G. Barles, Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.  doi: 10.1006/jdeq.1993.1100.  Google Scholar

[4]

M. Bocea and M. Mihǎilescu, The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.  doi: 10.1016/j.bulsci.2013.06.001.  Google Scholar

[5]

M. Bocea and M. Mihǎilescu, $\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.  doi: 10.1016/j.na.2010.03.004.  Google Scholar

[6]

Y. M. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.  Google Scholar

[7]

M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[8]

S. G. Deng, Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.  doi: 10.1016/j.jmaa.2007.07.028.  Google Scholar

[9]

L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[10]

D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.  doi: 10.4064/sm-143-3-267-293.  Google Scholar

[11]

X. L. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.  doi: 10.1016/j.na.2004.07.009.  Google Scholar

[12]

X. L. FanJ. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.  doi: 10.1006/jmaa.2001.7618.  Google Scholar

[13]

X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[14]

X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.)  Google Scholar

[15]

G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.  doi: 10.1016/j.na.2013.02.011.  Google Scholar

[16]

N. FukagaiM. Ito and K. Narukawa, Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206.   Google Scholar

[17]

P. HarjulehtoP. HästöÚ. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.  Google Scholar

[18]

P. JuutinenP. Lindqvist and J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.  doi: 10.1007/s002050050157.  Google Scholar

[19]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618.   Google Scholar

[20]

A. Lê, On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9.   Google Scholar

[21]

P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006.  Google Scholar

[22]

P. Lindqvist and T. Lukkari, A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421.   Google Scholar

[23]

J. J. ManfrediJ. D. Rossi and J. M. Urbano, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.  doi: 10.1016/j.na.2009.06.054.  Google Scholar

[24]

J. J. ManfrediJ. D. Rossi and J. M. Urbano, $p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.  doi: 10.1016/j.anihpc.2009.09.008.  Google Scholar

[25]

J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.  Google Scholar

[26]

M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. doi: 10.1090/conm/540/10665.  Google Scholar

[27]

M. Pérez-Llanos and J. D. Rossi, The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.  doi: 10.1016/j.jmaa.2009.09.044.  Google Scholar

[28]

M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.  Google Scholar

[29]

V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66.   Google Scholar

[30]

V. V. Zhikov, On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (58)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]