\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we study the asymptotic behaviour of the first eigenvalues $ \lambda^{1}_{p_{n}(\cdot)} $ and the corresponding eigenfunctions $ u_{n} $ of (1) as $ p_{n}(x)\rightarrow \infty $. Under adequate hypotheses on the sequence $ p_{n} $, we prove that $ \lambda^{1}_{p_{n}(\cdot)} $ converges to 1 and the positive first eigenfunctions $ u_{n} $, normalized by $ |u_{n}|_{L^{p_{n}(x)}(\partial \Omega)} = 1 $, converge, up to subsequences, to $ u_{\infty} $ uniformly in $ C^{\alpha}(\overline{\Omega}) $, for some $ 0<\alpha<1 $, where $ u_{\infty} $ is a nontrivial viscosity solution of a problem involving the $ \infty $-Laplacian subject to appropriate boundary conditions.

    Mathematics Subject Classification: Primary: 35D40, 35J60; Secondary: 35J70, 35J20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. Abdullayev and M. Bocea, The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.  doi: 10.1016/j.na.2013.06.005.
    [2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.  doi: 10.1007/s002050100117.
    [3] G. Barles, Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.  doi: 10.1006/jdeq.1993.1100.
    [4] M. Bocea and M. Mihǎilescu, The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.  doi: 10.1016/j.bulsci.2013.06.001.
    [5] M. Bocea and M. Mihǎilescu, $\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.  doi: 10.1016/j.na.2010.03.004.
    [6] Y. M. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.
    [7] M. G. CrandallH. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.
    [8] S. G. Deng, Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.  doi: 10.1016/j.jmaa.2007.07.028.
    [9] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.
    [10] D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.  doi: 10.4064/sm-143-3-267-293.
    [11] X. L. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.  doi: 10.1016/j.na.2004.07.009.
    [12] X. L. FanJ. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.  doi: 10.1006/jmaa.2001.7618.
    [13] X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.
    [14] X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.)
    [15] G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.  doi: 10.1016/j.na.2013.02.011.
    [16] N. FukagaiM. Ito and K. Narukawa, Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206. 
    [17] P. HarjulehtoP. HästöÚ. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.  doi: 10.1016/j.na.2010.02.033.
    [18] P. JuutinenP. Lindqvist and J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.  doi: 10.1007/s002050050157.
    [19] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618. 
    [20] A. Lê, On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9. 
    [21] P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006.
    [22] P. Lindqvist and T. Lukkari, A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421. 
    [23] J. J. ManfrediJ. D. Rossi and J. M. Urbano, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.  doi: 10.1016/j.na.2009.06.054.
    [24] J. J. ManfrediJ. D. Rossi and J. M. Urbano, $p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.  doi: 10.1016/j.anihpc.2009.09.008.
    [25] J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. doi: 10.1007/BFb0072210.
    [26] M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011. doi: 10.1090/conm/540/10665.
    [27] M. Pérez-Llanos and J. D. Rossi, The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.  doi: 10.1016/j.jmaa.2009.09.044.
    [28] M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.
    [29] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66. 
    [30] V. V. Zhikov, On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269. 
  • 加载中
SHARE

Article Metrics

HTML views(299) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return