In this paper we study the asymptotic behaviour of the first eigenvalues $ \lambda^{1}_{p_{n}(\cdot)} $ and the corresponding eigenfunctions $ u_{n} $ of (1) as $ p_{n}(x)\rightarrow \infty $. Under adequate hypotheses on the sequence $ p_{n} $, we prove that $ \lambda^{1}_{p_{n}(\cdot)} $ converges to 1 and the positive first eigenfunctions $ u_{n} $, normalized by $ |u_{n}|_{L^{p_{n}(x)}(\partial \Omega)} = 1 $, converge, up to subsequences, to $ u_{\infty} $ uniformly in $ C^{\alpha}(\overline{\Omega}) $, for some $ 0<\alpha<1 $, where $ u_{\infty} $ is a nontrivial viscosity solution of a problem involving the $ \infty $-Laplacian subject to appropriate boundary conditions.
Citation: |
[1] |
F. Abdullayev and M. Bocea, The Robin eigenvalue problem for the $p(x)$-Laplacian as $p\rightarrow\infty$, Nonlinear Anal., 91 (2013), 32-45.
doi: 10.1016/j.na.2013.06.005.![]() ![]() ![]() |
[2] |
E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.
doi: 10.1007/s002050100117.![]() ![]() ![]() |
[3] |
G. Barles, Fully non-linear Neumann type boundary conditions for second-order elliptic and parabolic equations, J. Differential Equations, 106 (1993), 90-106.
doi: 10.1006/jdeq.1993.1100.![]() ![]() ![]() |
[4] |
M. Bocea and M. Mihǎilescu, The principal frequency of $\triangle_{\infty}$ as a limit of Rayleigh quotients involving Luxemburg norms, Bull. Sci.math., 138 (2014), 236-252.
doi: 10.1016/j.bulsci.2013.06.001.![]() ![]() ![]() |
[5] |
M. Bocea and M. Mihǎilescu, $\Gamma$-convergence of power-law functionals with variable exponents, Nonlinear Anal., 73 (2010), 110-121.
doi: 10.1016/j.na.2010.03.004.![]() ![]() ![]() |
[6] |
Y. M. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.
doi: 10.1137/050624522.![]() ![]() ![]() |
[7] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Am. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[8] |
S. G. Deng, Eigenvalues of the $p(x)$-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937.
doi: 10.1016/j.jmaa.2007.07.028.![]() ![]() ![]() |
[9] |
L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
doi: 10.1007/978-3-642-18363-8.![]() ![]() ![]() |
[10] |
D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
doi: 10.4064/sm-143-3-267-293.![]() ![]() ![]() |
[11] |
X. L. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^{N}$, Nonlinear Anal., 59 (2004), 173-188.
doi: 10.1016/j.na.2004.07.009.![]() ![]() ![]() |
[12] |
X. L. Fan, J. S. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl., 262 (2001), 749-760.
doi: 10.1006/jmaa.2001.7618.![]() ![]() ![]() |
[13] |
X. L. Fan and D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
doi: 10.1006/jmaa.2000.7617.![]() ![]() ![]() |
[14] |
X. L. Fan, Y. Z. Zhao and Q. H. Zhang, A strong maximum principle for $p(x)$-Laplace equations, Chinese J. Contemp. Math., 24 (2003), 277–282. (Translation of Chinese Ann. Math. Ser. A, 24 (2003) 495–500.)
![]() ![]() |
[15] |
G. Franzina and P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1-16.
doi: 10.1016/j.na.2013.02.011.![]() ![]() ![]() |
[16] |
N. Fukagai, M. Ito and K. Narukawa, Limit as $p\rightarrow\infty$ of $p$-Laplace eigenvalue problems and $L^{\infty}$ inequality of the Poincaré type, Differ. Integral Equations, 12 (1999), 183-206.
![]() ![]() |
[17] |
P. Harjulehto, P. Hästö, Ú. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.
doi: 10.1016/j.na.2010.02.033.![]() ![]() ![]() |
[18] |
P. Juutinen, P. Lindqvist and J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.
doi: 10.1007/s002050050157.![]() ![]() ![]() |
[19] |
O. Kováčik and J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J, 41 (1991), 592-618.
![]() |
[20] |
A. Lê, On the first engenvalue of the Steklov eigenvalue problem for the infinity Laplacian, Electron. J. Differential Equations, 2006 (2006), 1-9.
![]() ![]() |
[21] |
P. Lindqvist, Notes on the $p$-Laplace Equation, Report. University of Jyväskylä Department of Mathematics and Statistics, 102. University of Jyväskylä, Jyväskylä, 2006.
![]() ![]() |
[22] |
P. Lindqvist and T. Lukkari, A curious equation involving the $\infty$-Laplacian, Adv. Calc. Var., 3 (2010), 409-421.
![]() ![]() |
[23] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions, Nonlinear Anal., 72 (2010), 309-315.
doi: 10.1016/j.na.2009.06.054.![]() ![]() ![]() |
[24] |
J. J. Manfredi, J. D. Rossi and J. M. Urbano, $p(x)$-harmonic functions with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2581-2595.
doi: 10.1016/j.anihpc.2009.09.008.![]() ![]() ![]() |
[25] |
J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
doi: 10.1007/BFb0072210.![]() ![]() ![]() |
[26] |
M. Pérez-Llanos and J. D. Rossi, Limits as $p(x)\rightarrow\infty$ of $p(x)$-harmonic functions with non-homogeneous Neumann boundary conditions, Nonlinear Elliptic Partial Differential Equations, 187–201, Contemp. Math., 540, Amer. Math. Soc., Providence, RI, 2011.
doi: 10.1090/conm/540/10665.![]() ![]() ![]() |
[27] |
M. Pérez-Llanos and J. D. Rossi, The behaviour of the $p(x)$-Laplacian eigenvalue problem as $p(x)\rightarrow \infty$, J. Math. Anal. Appl., 363 (2010), 502-511.
doi: 10.1016/j.jmaa.2009.09.044.![]() ![]() ![]() |
[28] |
M. Råžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
doi: 10.1007/BFb0104029.![]() ![]() ![]() |
[29] |
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv., 29 (1987), 33-66.
![]() |
[30] |
V. V. Zhikov, On Lavrentiev$'$s phenomenon, Russ. J. Math. Phys., 3 (1995), 249-269.
![]() ![]() |