• Previous Article
    Probabilistic continuity of a pullback random attractor in time-sample
  • DCDS-B Home
  • This Issue
  • Next Article
    Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy
July  2020, 25(7): 2665-2697. doi: 10.3934/dcdsb.2020027

The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise

1. 

School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China

2. 

College of Science, Northwest A & F University Yangling, Shaanxi 712100, China

* Corresponding author: Yejuan Wang

Received  March 2019 Published  April 2020

Fund Project: This work was supported by NSF of China (Grant Nos. 41875084, 11801452, 11571153), the Fundamental Research Funds for the Central Universities under Grants No. lzujbky-2018-ot03 and lzujbky-2018-it58, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2019JQ-196, and the Doctor Fund of Northwest A & F University under Grant No. 2452018017

This article is devoted to study time fractional stochastic evolution inclusions with infinite delays driven by a nonlinear multiplicative noise and a fractional Brownian motion with Hurst parameter $ H\in(\frac{1}{2},1) $. First of all, we investigate the local and global existence of mild solutions to such evolution inclusions by using the fractional resolvent operator theory and some new results on the measure of noncompactness for the stochastic integral term. Further, we prove that every mild solution decays exponentially to zero in the sense of mean-square topology.

Citation: Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027
References:
[1]

N. U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12 (1994), 1-10.  doi: 10.1080/07362999408809334.  Google Scholar

[2]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[3]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph.D. thesis), University Press Facilities, Eindhoven University of Technology, 2001.  Google Scholar

[4]

P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232-246.  doi: 10.1016/j.amc.2015.01.035.  Google Scholar

[5]

M. BenchohraS. Litimein and G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335-350.  doi: 10.1080/00036811.2011.616496.  Google Scholar

[6]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[7]

B. Boufoussi and S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.  doi: 10.1016/j.spl.2012.04.013.  Google Scholar

[8]

Á. Cartea and D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105. doi: 10.1103/PhysRevE.76.041105.  Google Scholar

[9]

P. M. Carvalho-Neto, Fractional Differential Equations: A Novel Study of Local and Global Solutions in Banach Spaces, PhD thesis, Universidade de São Paulo, São Carlos, 2013. Google Scholar

[10]

P. M. Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.  doi: 10.1016/j.jde.2015.04.008.  Google Scholar

[11]

A. Chadha and D. N. Pandey, Existence of the mild solution for impulsive neutral stochastic fractional integro-differential inclusions with nonlocal conditions, Mediterr. J. Math., 13 (2016), 1005-1031.  doi: 10.1007/s00009-015-0558-7.  Google Scholar

[12]

P. Y. Chen and Y. X. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.  doi: 10.1007/s00033-013-0351-z.  Google Scholar

[13]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[14]

K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992.  Google Scholar

[15]

R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96 (2006), 230601. doi: 10.1103/PhysRevLett.96.230601.  Google Scholar

[16]

T. Guendouzi, Existence and controllability results for fractional stochastic semilinear differential inclusions, Differ. Equ. Dyn. Syst., 23 (2015), 225-240.  doi: 10.1007/s12591-014-0217-7.  Google Scholar

[17]

T. Guendouzi and L. Bousmaha, Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay, Qual. Theory Dyn. Syst., 13 (2014), 89-119.  doi: 10.1007/s12346-014-0107-y.  Google Scholar

[18]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, in: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001.  Google Scholar

[19]

T. D. Ke and D. Lan, Global attractor for a class of functional differential inclusions with Hille-Yosida operators, Nonlinear Anal., 103 (2014), 72-86.  doi: 10.1016/j.na.2014.03.006.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[21]

M. Kisielewicz, Stochastic Differential Inclusions and Applications, Springer, New York, 2013. doi: 10.1007/978-1-4614-6756-4.  Google Scholar

[22]

K. X. Li, Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582-1591.  doi: 10.1002/mma.3169.  Google Scholar

[23]

Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay, Stoch. Anal. Appl., 25 (2007), 397-415.  doi: 10.1080/07362990601139610.  Google Scholar

[24] N. G. Lloyd, Degree Theory, Cambridge University Press, 1978.   Google Scholar
[25]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., 23 (1994), 246-251.   Google Scholar

[26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[27]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[28]

M. Michta, On connections between stochastic differential inclusions and set-valued stochastic differential equations driven by semimartingales, J. Differential Equations, 262 (2017), 2106-2134.  doi: 10.1016/j.jde.2016.10.039.  Google Scholar

[29]

Y. S. Mishura, Stocastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[30]

D. Nguyen, Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1-7.  doi: 10.1016/j.cnsns.2013.06.004.  Google Scholar

[31]

T. A. NguyenD. K. Tran and N. Q. Nguyen, Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3637-3654.  doi: 10.3934/dcdsb.2016114.  Google Scholar

[32]

M. Niu and B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489.  doi: 10.1090/S0002-9939-09-10197-1.  Google Scholar

[33]

I. Podlubny, Fractional Difierential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, 1999.  Google Scholar

[34]

Y. RenL. Y. Hu and R. Sakthivel, Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011), 2603-2614.  doi: 10.1016/j.cam.2010.10.051.  Google Scholar

[35]

R. SakthivelY. RenA. Debbouche and N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.  doi: 10.1080/00036811.2015.1090562.  Google Scholar

[36]

C. Sandra, Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem, SIAM J. Control Optim., 40 (2001), 824-852.  doi: 10.1137/S0363012999359949.  Google Scholar

[37]

X. B. Shu and F. Xu, The existence of solutions for impulsive fractional partial neutral differential equations, J. Math., 2013 (2013), Art. ID 147193, 9 pp. doi: 10.1155/2013/147193.  Google Scholar

[38]

I. M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative, Phys. Rev. E, 67 (2003), 010101. doi: 10.1103/PhysRevE.67.010101.  Google Scholar

[39]

P. Tamilalagan and P. Balasubramaniam, Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion, Appl. Math. Comput., 305 (2017), 299-307.  doi: 10.1016/j.amc.2017.02.013.  Google Scholar

[40]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[41]

Z. M. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.  doi: 10.1093/imamci/dns033.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12 (1994), 1-10.  doi: 10.1080/07362999408809334.  Google Scholar

[2]

D. Araya and C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.  doi: 10.1016/j.na.2007.10.004.  Google Scholar

[3]

E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph.D. thesis), University Press Facilities, Eindhoven University of Technology, 2001.  Google Scholar

[4]

P. Balasubramaniam and P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232-246.  doi: 10.1016/j.amc.2015.01.035.  Google Scholar

[5]

M. BenchohraS. Litimein and G. N'Guérékata, On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335-350.  doi: 10.1080/00036811.2011.616496.  Google Scholar

[6]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[7]

B. Boufoussi and S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.  doi: 10.1016/j.spl.2012.04.013.  Google Scholar

[8]

Á. Cartea and D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105. doi: 10.1103/PhysRevE.76.041105.  Google Scholar

[9]

P. M. Carvalho-Neto, Fractional Differential Equations: A Novel Study of Local and Global Solutions in Banach Spaces, PhD thesis, Universidade de São Paulo, São Carlos, 2013. Google Scholar

[10]

P. M. Carvalho-Neto and G. Planas, Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.  doi: 10.1016/j.jde.2015.04.008.  Google Scholar

[11]

A. Chadha and D. N. Pandey, Existence of the mild solution for impulsive neutral stochastic fractional integro-differential inclusions with nonlocal conditions, Mediterr. J. Math., 13 (2016), 1005-1031.  doi: 10.1007/s00009-015-0558-7.  Google Scholar

[12]

P. Y. Chen and Y. X. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.  doi: 10.1007/s00033-013-0351-z.  Google Scholar

[13]

R. F. Curtain and P. L. Falb, Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.  doi: 10.1016/0022-0396(71)90004-0.  Google Scholar

[14]

K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992.  Google Scholar

[15]

R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96 (2006), 230601. doi: 10.1103/PhysRevLett.96.230601.  Google Scholar

[16]

T. Guendouzi, Existence and controllability results for fractional stochastic semilinear differential inclusions, Differ. Equ. Dyn. Syst., 23 (2015), 225-240.  doi: 10.1007/s12591-014-0217-7.  Google Scholar

[17]

T. Guendouzi and L. Bousmaha, Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay, Qual. Theory Dyn. Syst., 13 (2014), 89-119.  doi: 10.1007/s12346-014-0107-y.  Google Scholar

[18]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, in: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001.  Google Scholar

[19]

T. D. Ke and D. Lan, Global attractor for a class of functional differential inclusions with Hille-Yosida operators, Nonlinear Anal., 103 (2014), 72-86.  doi: 10.1016/j.na.2014.03.006.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[21]

M. Kisielewicz, Stochastic Differential Inclusions and Applications, Springer, New York, 2013. doi: 10.1007/978-1-4614-6756-4.  Google Scholar

[22]

K. X. Li, Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582-1591.  doi: 10.1002/mma.3169.  Google Scholar

[23]

Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay, Stoch. Anal. Appl., 25 (2007), 397-415.  doi: 10.1080/07362990601139610.  Google Scholar

[24] N. G. Lloyd, Degree Theory, Cambridge University Press, 1978.   Google Scholar
[25]

F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., 23 (1994), 246-251.   Google Scholar

[26] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[27]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.  doi: 10.1137/1010093.  Google Scholar

[28]

M. Michta, On connections between stochastic differential inclusions and set-valued stochastic differential equations driven by semimartingales, J. Differential Equations, 262 (2017), 2106-2134.  doi: 10.1016/j.jde.2016.10.039.  Google Scholar

[29]

Y. S. Mishura, Stocastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[30]

D. Nguyen, Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1-7.  doi: 10.1016/j.cnsns.2013.06.004.  Google Scholar

[31]

T. A. NguyenD. K. Tran and N. Q. Nguyen, Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3637-3654.  doi: 10.3934/dcdsb.2016114.  Google Scholar

[32]

M. Niu and B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489.  doi: 10.1090/S0002-9939-09-10197-1.  Google Scholar

[33]

I. Podlubny, Fractional Difierential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, 1999.  Google Scholar

[34]

Y. RenL. Y. Hu and R. Sakthivel, Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011), 2603-2614.  doi: 10.1016/j.cam.2010.10.051.  Google Scholar

[35]

R. SakthivelY. RenA. Debbouche and N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.  doi: 10.1080/00036811.2015.1090562.  Google Scholar

[36]

C. Sandra, Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem, SIAM J. Control Optim., 40 (2001), 824-852.  doi: 10.1137/S0363012999359949.  Google Scholar

[37]

X. B. Shu and F. Xu, The existence of solutions for impulsive fractional partial neutral differential equations, J. Math., 2013 (2013), Art. ID 147193, 9 pp. doi: 10.1155/2013/147193.  Google Scholar

[38]

I. M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative, Phys. Rev. E, 67 (2003), 010101. doi: 10.1103/PhysRevE.67.010101.  Google Scholar

[39]

P. Tamilalagan and P. Balasubramaniam, Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion, Appl. Math. Comput., 305 (2017), 299-307.  doi: 10.1016/j.amc.2017.02.013.  Google Scholar

[40]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[41]

Z. M. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.  doi: 10.1093/imamci/dns033.  Google Scholar

[1]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[2]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[3]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[4]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[5]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[6]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[7]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[8]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[9]

Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[12]

Kexue Li. Effects of the noise level on nonlinear stochastic fractional heat equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5437-5460. doi: 10.3934/dcdsb.2019065

[13]

Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional Ginzburg-Landau equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 575-590. doi: 10.3934/dcdsb.2016.21.575

[14]

Yun Lan, Ji Shu. Dynamics of non-autonomous fractional stochastic Ginzburg-Landau equations with multiplicative noise. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2409-2431. doi: 10.3934/cpaa.2019109

[15]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[16]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[17]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[18]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[19]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[20]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]