-
Previous Article
Probabilistic continuity of a pullback random attractor in time-sample
- DCDS-B Home
- This Issue
-
Next Article
Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy
The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise
1. | School of Mathematics and Statistics, Gansu Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou 730000, China |
2. | College of Science, Northwest A & F University Yangling, Shaanxi 712100, China |
This article is devoted to study time fractional stochastic evolution inclusions with infinite delays driven by a nonlinear multiplicative noise and a fractional Brownian motion with Hurst parameter $ H\in(\frac{1}{2},1) $. First of all, we investigate the local and global existence of mild solutions to such evolution inclusions by using the fractional resolvent operator theory and some new results on the measure of noncompactness for the stochastic integral term. Further, we prove that every mild solution decays exponentially to zero in the sense of mean-square topology.
References:
[1] |
N. U. Ahmed,
Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12 (1994), 1-10.
doi: 10.1080/07362999408809334. |
[2] |
D. Araya and C. Lizama,
Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.
doi: 10.1016/j.na.2007.10.004. |
[3] |
E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph.D. thesis), University Press Facilities, Eindhoven University of Technology, 2001. |
[4] |
P. Balasubramaniam and P. Tamilalagan,
Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232-246.
doi: 10.1016/j.amc.2015.01.035. |
[5] |
M. Benchohra, S. Litimein and G. N'Guérékata,
On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335-350.
doi: 10.1080/00036811.2011.616496. |
[6] |
A. Boudaoui, T. Caraballo and A. Ouahab,
Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.
doi: 10.1002/mma.3580. |
[7] |
B. Boufoussi and S. Hajji,
Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.
doi: 10.1016/j.spl.2012.04.013. |
[8] |
Á. Cartea and D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105.
doi: 10.1103/PhysRevE.76.041105. |
[9] |
P. M. Carvalho-Neto, Fractional Differential Equations: A Novel Study of Local and Global Solutions in Banach Spaces, PhD thesis, Universidade de São Paulo, São Carlos, 2013. Google Scholar |
[10] |
P. M. Carvalho-Neto and G. Planas,
Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.
doi: 10.1016/j.jde.2015.04.008. |
[11] |
A. Chadha and D. N. Pandey,
Existence of the mild solution for impulsive neutral stochastic fractional integro-differential inclusions with nonlocal conditions, Mediterr. J. Math., 13 (2016), 1005-1031.
doi: 10.1007/s00009-015-0558-7. |
[12] |
P. Y. Chen and Y. X. Li,
Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.
doi: 10.1007/s00033-013-0351-z. |
[13] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[14] |
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992. |
[15] |
R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96 (2006), 230601.
doi: 10.1103/PhysRevLett.96.230601. |
[16] |
T. Guendouzi,
Existence and controllability results for fractional stochastic semilinear differential inclusions, Differ. Equ. Dyn. Syst., 23 (2015), 225-240.
doi: 10.1007/s12591-014-0217-7. |
[17] |
T. Guendouzi and L. Bousmaha,
Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay, Qual. Theory Dyn. Syst., 13 (2014), 89-119.
doi: 10.1007/s12346-014-0107-y. |
[18] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, in: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001. |
[19] |
T. D. Ke and D. Lan,
Global attractor for a class of functional differential inclusions with Hille-Yosida operators, Nonlinear Anal., 103 (2014), 72-86.
doi: 10.1016/j.na.2014.03.006. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006. |
[21] |
M. Kisielewicz, Stochastic Differential Inclusions and Applications, Springer, New York, 2013.
doi: 10.1007/978-1-4614-6756-4. |
[22] |
K. X. Li,
Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582-1591.
doi: 10.1002/mma.3169. |
[23] |
Y. Li and B. Liu,
Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay, Stoch. Anal. Appl., 25 (2007), 397-415.
doi: 10.1080/07362990601139610. |
[24] |
N. G. Lloyd, Degree Theory, Cambridge University Press, 1978.
![]() |
[25] |
F. Mainardi,
On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., 23 (1994), 246-251.
|
[26] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() |
[27] |
B. B. Mandelbrot and J. W. Van Ness,
Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.
doi: 10.1137/1010093. |
[28] |
M. Michta,
On connections between stochastic differential inclusions and set-valued stochastic differential equations driven by semimartingales, J. Differential Equations, 262 (2017), 2106-2134.
doi: 10.1016/j.jde.2016.10.039. |
[29] |
Y. S. Mishura, Stocastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-75873-0. |
[30] |
D. Nguyen,
Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1-7.
doi: 10.1016/j.cnsns.2013.06.004. |
[31] |
T. A. Nguyen, D. K. Tran and N. Q. Nguyen,
Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3637-3654.
doi: 10.3934/dcdsb.2016114. |
[32] |
M. Niu and B. Xie,
Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489.
doi: 10.1090/S0002-9939-09-10197-1. |
[33] |
I. Podlubny, Fractional Difierential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, 1999. |
[34] |
Y. Ren, L. Y. Hu and R. Sakthivel,
Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011), 2603-2614.
doi: 10.1016/j.cam.2010.10.051. |
[35] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[36] |
C. Sandra,
Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem, SIAM J. Control Optim., 40 (2001), 824-852.
doi: 10.1137/S0363012999359949. |
[37] |
X. B. Shu and F. Xu, The existence of solutions for impulsive fractional partial neutral differential equations, J. Math., 2013 (2013), Art. ID 147193, 9 pp.
doi: 10.1155/2013/147193. |
[38] |
I. M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative, Phys. Rev. E, 67 (2003), 010101.
doi: 10.1103/PhysRevE.67.010101. |
[39] |
P. Tamilalagan and P. Balasubramaniam,
Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion, Appl. Math. Comput., 305 (2017), 299-307.
doi: 10.1016/j.amc.2017.02.013. |
[40] |
R. N. Wang, D. H. Chen and T. J. Xiao,
Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.
doi: 10.1016/j.jde.2011.08.048. |
[41] |
Z. M. Yan,
Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.
doi: 10.1093/imamci/dns033. |
show all references
References:
[1] |
N. U. Ahmed,
Nonlinear stochastic differential inclusions on Banach space, Stoch. Anal. Appl., 12 (1994), 1-10.
doi: 10.1080/07362999408809334. |
[2] |
D. Araya and C. Lizama,
Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal., 69 (2008), 3692-3705.
doi: 10.1016/j.na.2007.10.004. |
[3] |
E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces (Ph.D. thesis), University Press Facilities, Eindhoven University of Technology, 2001. |
[4] |
P. Balasubramaniam and P. Tamilalagan,
Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232-246.
doi: 10.1016/j.amc.2015.01.035. |
[5] |
M. Benchohra, S. Litimein and G. N'Guérékata,
On fractional integro-differential inclusions with state-dependent delay in Banach spaces, Appl. Anal., 92 (2013), 335-350.
doi: 10.1080/00036811.2011.616496. |
[6] |
A. Boudaoui, T. Caraballo and A. Ouahab,
Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Methods Appl. Sci., 39 (2016), 1435-1451.
doi: 10.1002/mma.3580. |
[7] |
B. Boufoussi and S. Hajji,
Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.
doi: 10.1016/j.spl.2012.04.013. |
[8] |
Á. Cartea and D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76 (2007), 041105.
doi: 10.1103/PhysRevE.76.041105. |
[9] |
P. M. Carvalho-Neto, Fractional Differential Equations: A Novel Study of Local and Global Solutions in Banach Spaces, PhD thesis, Universidade de São Paulo, São Carlos, 2013. Google Scholar |
[10] |
P. M. Carvalho-Neto and G. Planas,
Mild solutions to the time fractional Navier-Stokes equations in $\mathbb{R}^N$, J. Differential Equations, 259 (2015), 2948-2980.
doi: 10.1016/j.jde.2015.04.008. |
[11] |
A. Chadha and D. N. Pandey,
Existence of the mild solution for impulsive neutral stochastic fractional integro-differential inclusions with nonlocal conditions, Mediterr. J. Math., 13 (2016), 1005-1031.
doi: 10.1007/s00009-015-0558-7. |
[12] |
P. Y. Chen and Y. X. Li,
Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 65 (2014), 711-728.
doi: 10.1007/s00033-013-0351-z. |
[13] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[14] |
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, 1992. |
[15] |
R. Friedrich, F. Jenko, A. Baule and S. Eule, Anomalous diffusion of inertial, weakly damped particles, Phys. Rev. Lett., 96 (2006), 230601.
doi: 10.1103/PhysRevLett.96.230601. |
[16] |
T. Guendouzi,
Existence and controllability results for fractional stochastic semilinear differential inclusions, Differ. Equ. Dyn. Syst., 23 (2015), 225-240.
doi: 10.1007/s12591-014-0217-7. |
[17] |
T. Guendouzi and L. Bousmaha,
Approximate controllability of fractional neutral stochastic functional integro-differential inclusions with infinite delay, Qual. Theory Dyn. Syst., 13 (2014), 89-119.
doi: 10.1007/s12346-014-0107-y. |
[18] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, in: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001. |
[19] |
T. D. Ke and D. Lan,
Global attractor for a class of functional differential inclusions with Hille-Yosida operators, Nonlinear Anal., 103 (2014), 72-86.
doi: 10.1016/j.na.2014.03.006. |
[20] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam, 2006. |
[21] |
M. Kisielewicz, Stochastic Differential Inclusions and Applications, Springer, New York, 2013.
doi: 10.1007/978-1-4614-6756-4. |
[22] |
K. X. Li,
Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38 (2015), 1582-1591.
doi: 10.1002/mma.3169. |
[23] |
Y. Li and B. Liu,
Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay, Stoch. Anal. Appl., 25 (2007), 397-415.
doi: 10.1080/07362990601139610. |
[24] |
N. G. Lloyd, Degree Theory, Cambridge University Press, 1978.
![]() |
[25] |
F. Mainardi,
On the initial value problem for the fractional diffusion-wave equation, Ser. Adv. Math. Appl. Sci., 23 (1994), 246-251.
|
[26] |
F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, 2010.
doi: 10.1142/9781848163300.![]() ![]() |
[27] |
B. B. Mandelbrot and J. W. Van Ness,
Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.
doi: 10.1137/1010093. |
[28] |
M. Michta,
On connections between stochastic differential inclusions and set-valued stochastic differential equations driven by semimartingales, J. Differential Equations, 262 (2017), 2106-2134.
doi: 10.1016/j.jde.2016.10.039. |
[29] |
Y. S. Mishura, Stocastic Calculus for Fractional Brownian Motion and Related Processes, Springer-Verlag, Berlin, 2008.
doi: 10.1007/978-3-540-75873-0. |
[30] |
D. Nguyen,
Asymptotic behavior of linear fractional stochastic differential equations with time-varying delays, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1-7.
doi: 10.1016/j.cnsns.2013.06.004. |
[31] |
T. A. Nguyen, D. K. Tran and N. Q. Nguyen,
Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 3637-3654.
doi: 10.3934/dcdsb.2016114. |
[32] |
M. Niu and B. Xie,
Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479-1489.
doi: 10.1090/S0002-9939-09-10197-1. |
[33] |
I. Podlubny, Fractional Difierential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, California, USA, 1999. |
[34] |
Y. Ren, L. Y. Hu and R. Sakthivel,
Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011), 2603-2614.
doi: 10.1016/j.cam.2010.10.051. |
[35] |
R. Sakthivel, Y. Ren, A. Debbouche and N. I. Mahmudov,
Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361-2382.
doi: 10.1080/00036811.2015.1090562. |
[36] |
C. Sandra,
Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem, SIAM J. Control Optim., 40 (2001), 824-852.
doi: 10.1137/S0363012999359949. |
[37] |
X. B. Shu and F. Xu, The existence of solutions for impulsive fractional partial neutral differential equations, J. Math., 2013 (2013), Art. ID 147193, 9 pp.
doi: 10.1155/2013/147193. |
[38] |
I. M. Sokolov and R. Metzler, Towards deterministic equations for Lévy walks: The fractional material derivative, Phys. Rev. E, 67 (2003), 010101.
doi: 10.1103/PhysRevE.67.010101. |
[39] |
P. Tamilalagan and P. Balasubramaniam,
Moment stability via resolvent operators of fractional stochastic differential inclusions driven by fractional Brownian motion, Appl. Math. Comput., 305 (2017), 299-307.
doi: 10.1016/j.amc.2017.02.013. |
[40] |
R. N. Wang, D. H. Chen and T. J. Xiao,
Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.
doi: 10.1016/j.jde.2011.08.048. |
[41] |
Z. M. Yan,
Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462.
doi: 10.1093/imamci/dns033. |
[1] |
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021001 |
[2] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[3] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[4] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[5] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[6] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[7] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[8] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[9] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[10] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[11] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[12] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[13] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[14] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[15] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[16] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[17] |
Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020456 |
[18] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[19] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[20] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]