Given a time-sample dependent attractor of a random dynamical system, we study its lower semi-continuity in probability along the time axis, and the criteria are established by using the local-sample asymptotically compactness for a triple-continuous system. The abstract results are applied to the non-autonomous stochastic p-Laplace equation on an unbounded domain with weakly dissipative nonlinearity. Without any additional hypotheses, we prove that the pullback random attractor is probabilistically continuous in both time and sample parameters.
Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
doi: 10.1007/978-3-662-12878-7.![]() ![]() ![]() |
[2] |
J. M. Arrieta, A. N. Carvalho and J. A. Langa, Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations, J. Dynam. Differential Equations, 24 (2012), 427-481.
doi: 10.1007/s10884-012-9269-y.![]() ![]() ![]() |
[3] |
P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
doi: 10.1016/j.jde.2008.05.017.![]() ![]() ![]() |
[4] |
Z. Brzezniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains, Tran. Amer. Math. Soc., 358 (2006), 5587-5629.
doi: 10.1090/S0002-9947-06-03923-7.![]() ![]() ![]() |
[5] |
T. Caraballo, A. N. Carvalho and H. B. Da Costa, Equi-attraction and continuity of attractors for skew-product semiflows, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2949-2967.
doi: 10.3934/dcdsb.2016081.![]() ![]() ![]() |
[6] |
M. D. Chekroun, E. Simonnet and M. Ghil, Stochastic climate dynamics: Random attractors and time-dependent invariant measures, Physica D, 240 (2011), 1685-1700.
doi: 10.1016/j.physd.2011.06.005.![]() ![]() ![]() |
[7] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705.![]() ![]() ![]() |
[8] |
H. Crauel, P. E. Kloeden and M. Yang, Random attractors of stochastic reaction-diffusion equations on variable domains, Stoch. Dyn., 11 (2011), 301-314.
doi: 10.1142/S0219493711003292.![]() ![]() ![]() |
[9] |
H. Crauel and M. Scheutzow, Minimal random attractors, J. Differential Equations, 265 (2018), 702-718.
doi: 10.1016/j.jde.2018.03.011.![]() ![]() ![]() |
[10] |
H. Cui, M. M. Freitas and J. A. Langa, Squeezing and finite dimensionality of cocycle attractors for 2D stochastic Navier-Stokes equation with non-autonomous forcing, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1297-1324.
doi: 10.3934/dcdsb.2018152.![]() ![]() ![]() |
[11] |
H. Cui, M. M. Freitas and J. A. Langa, On random cocycle attractors with autonomous attraction universes, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3379-3407.
doi: 10.3934/dcdsb.2017142.![]() ![]() ![]() |
[12] |
H. Cui and J. A. Langa, Uniform attractors for non-autonomous random dynamical systems, J. Differential Equations, 263 (2017), 1225-1268.
doi: 10.1016/j.jde.2017.03.018.![]() ![]() ![]() |
[13] |
H. Cui, J. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Differential Equations, 30 (2018), 1873-1898.
doi: 10.1007/s10884-017-9617-z.![]() ![]() ![]() |
[14] |
H. Cui, P. E. Kloeden and F. Wu, Pathwise upper semi-continuity of random pullback attractors along the time axis, Physica D, 374 (2018), 21-34.
doi: 10.1016/j.physd.2018.03.002.![]() ![]() ![]() |
[15] |
R. N. Figueroa-Lopez and G. Lozada-Cruz, Dynamics of parabolic equations via the finite element method I. Continuity of the set of equilibria, J. Differential Equations, 261 (2016), 5235-5259.
doi: 10.1016/j.jde.2016.07.023.![]() ![]() ![]() |
[16] |
M. M. Freitas, P. Kalita and J. A. Langa, Continuity of non-autonomous attractors for hyperbolic perturbation of parabolic equations, J. Differential Equations, 264 (2018), 1886-1945.
doi: 10.1016/j.jde.2017.10.007.![]() ![]() ![]() |
[17] |
B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255 (2013), 524-559.
doi: 10.1016/j.jde.2013.04.023.![]() ![]() ![]() |
[18] |
B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differential Equations, 25 (2013), 121-157.
doi: 10.1007/s10884-013-9294-5.![]() ![]() ![]() |
[19] |
A. Gu and P. E. Kloeden, Asymptotic behavior of a nonautonomous $p$-Laplacian lattice system, Intern. J. Bifur. Chaos, 26 (2016), 1650174, 9pp.
doi: 10.1142/S0218127416501741.![]() ![]() ![]() |
[20] |
X. Han and P. E. Kloeden, Non-autonomous lattice systems with switching effects and delayed recovery, J. Differential Equations, 261 (2016), 2986-3009.
doi: 10.1016/j.jde.2016.05.015.![]() ![]() ![]() |
[21] |
L. T. Hoang, E. J. Olson and J. C. Robinson, Continuity of pullback and uniform attractors, J. Differential Equations, 264 (2018), 4067-4093.
doi: 10.1016/j.jde.2017.12.002.![]() ![]() ![]() |
[22] |
P. E. Kloeden and J. A. Langa, Flattening, squeezing and the existence of random attractors, Proc. R. Soc. Lond., 463 (2007), 163-181.
doi: 10.1098/rspa.2006.1753.![]() ![]() ![]() |
[23] |
P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 425 (2015), 911-918.
doi: 10.1016/j.jmaa.2014.12.069.![]() ![]() ![]() |
[24] |
P. E. Kloeden, J. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, J. Math. Anal. Appl., 445 (2017), 513-531.
doi: 10.1016/j.jmaa.2016.08.004.![]() ![]() ![]() |
[25] |
A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 246 (2014), 365-376.
doi: 10.1016/j.amc.2014.08.033.![]() ![]() ![]() |
[26] |
A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 417 (2014), 1018-1038.
doi: 10.1016/j.jmaa.2014.03.037.![]() ![]() ![]() |
[27] |
J. A. Langa, J. C. Robinson and A. Suarez, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Differential Equations, 234 (2007), 607-625.
doi: 10.1016/j.jde.2006.11.016.![]() ![]() ![]() |
[28] |
D. Li, K. Lu, B. Wang and X. Wang, Limiting behavior of dynamics for stochastic reaction-diffusion equations with additive noise on thin domains, Discrete Contin. Dyn. Syst., 38 (2018), 187-208.
doi: 10.3934/dcds.2018009.![]() ![]() ![]() |
[29] |
F. Li, Y. Li and R. Wang, Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise, Discrete Cont. Dyn. Syst., 38 (2018), 3663-3685.
doi: 10.3934/dcds.2018158.![]() ![]() ![]() |
[30] |
Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Differential Equations, 258 (2015), 504-534.
doi: 10.1016/j.jde.2014.09.021.![]() ![]() ![]() |
[31] |
Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245 (2008), 1775-1800.
doi: 10.1016/j.jde.2008.06.031.![]() ![]() ![]() |
[32] |
Y. Li, L. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, J. Math. Anal. Appl., 459 (2018), 1106-1123.
doi: 10.1016/j.jmaa.2017.11.033.![]() ![]() ![]() |
[33] |
Y. Li, L. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 1535-1557.
doi: 10.3934/dcdsb.2018058.![]() ![]() ![]() |
[34] |
Y. Li, R. Wang and J. Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2569-2586.
doi: 10.3934/dcdsb.2017092.![]() ![]() ![]() |
[35] |
Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 1203-1223.
doi: 10.3934/dcdsb.2016.21.1203.![]() ![]() ![]() |
[36] |
L. Liu and T. Caraballo, Well-posedness and dynamics of a fractional stochastic integro-differential equation, Physica D, 455 (2017), 45-57.
doi: 10.1016/j.physd.2017.05.006.![]() ![]() ![]() |
[37] |
L. Liu and X. Fu, Existence and upper semicontinuity of (L-2, L-q) pullback attractors for a stochastic p-Laplacian equation, Commun. Pure Appl. Anal., 16 (2017), 443-473.
doi: 10.3934/cpaa.2017023.![]() ![]() ![]() |
[38] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Appl. Math. Cambridge, 2001.
![]() ![]() |
[39] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583.
doi: 10.1016/j.jde.2012.05.015.![]() ![]() ![]() |
[40] |
B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, Trans. Amer. Math. Soc., 363 (2011), 3639-3663.
doi: 10.1090/S0002-9947-2011-05247-5.![]() ![]() ![]() |
[41] |
S. Wang and Y. Li, Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Physica D, 382 (2018), 46-57.
doi: 10.1016/j.physd.2018.07.003.![]() ![]() ![]() |
[42] |
X. Wang, K. Lu and B. Wang, Exponential stability of non-autonomous stochastic delay lattice systems with multiplicative noise, J. Dynam. Differential Equations, 28 (2016), 1309-1335.
doi: 10.1007/s10884-015-9448-8.![]() ![]() ![]() |
[43] |
J. Yin and Y. Li, Two types of upper semi-continuity of bi-spatial attractors for non-autonomous stochastic p-Laplacian equations on R-n, Math. Methods Appl. Sci., 40 (2017), 4863-4879.
![]() ![]() |
[44] |
W. Zhao, Random dynamics of stochastic p-Laplacian equations on R-N with an unbounded additive noise, J. Math. Anal. Appl., 455 (2017), 1178-1203.
doi: 10.1016/j.jmaa.2017.06.025.![]() ![]() ![]() |
[45] |
S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in $R^3$, J. Differential Equations, 263 (2017), 6347-6383.
doi: 10.1016/j.jde.2017.07.013.![]() ![]() ![]() |