[1]
|
AIDS INFO - U.S. Department of Health and Human Services, Offering Information On HIV/AIDS Treatment, Prevention, and Research. Understanding HIV/AIDS, Side Effects of HIV Medicines, 2017. Available from: https://aidsinfo.nih.gov.
|
[2]
|
D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29-64.
doi: 10.1006/bulm.2001.0266.
|
[3]
|
Canada's Source for HIV and Hepatitis C Information (CATIE), HIV Treatment and an Undetectable Viral Load to Prevent HIV Transmission, 2018. Available from: www.catie.ca./reports/reports.webpage.
|
[4]
|
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[5]
|
R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of $CD4^{+}$ T-cells, Math. Biosci., 165 (2000), 27-39.
doi: 10.1016/S0025-5564(00)00006-7.
|
[6]
|
D. C. Douek, M. Roederer and R. A. Koup, Emerging concepts in the immunopathogenesis of AIDS, Annual Rev. Medicine, 60 (2009), 471-484.
doi: 10.1146/annurev.med.60.041807.123549.
|
[7]
|
P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Modell., 2 (2017), 288-303.
doi: 10.1016/j.idm.2017.06.002.
|
[8]
|
J. W. Eaton and T. B. Hallett, Why the proportion of transmission during early-stage HIV infection does not predict the long-term impact of treatment on HIV incidence, Proceedings of the National Academy of Sciences, 111, 2014, 16202â€"16207.
doi: 10.1073/pnas.1323007111.
|
[9]
|
H. R. Erfanian and M. H. Noori Skandari, Optimal control of an HIV model, Internat. J. Appl. Math. Comput. Sci., 2 (2011), 650-658.
doi: 10.22436/jmcs.02.04.09.
|
[10]
|
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Applications of Mathematics, 1, Springer-Verlag, Berlin-New York, 1975.
doi: 10.1007/978-1-4612-6380-7.
|
[11]
|
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[12]
|
D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373 (1995), 123-126.
doi: 10.1038/373123a0.
|
[13]
|
J. F. Hutchinson, The biology and evolution of HIV, Annual Rev. Anthropology, 30 (2001), 85-108.
doi: 10.1146/annurev.anthro.30.1.85.
|
[14]
|
H. R. Joshi, Optimal control of an HIV immunology model, Optimal Control Appl. Methods, 23 (2002), 199-213.
doi: 10.1002/oca.710.
|
[15]
|
S. E. Langford, J. Ananworanich and D. A. Cooper, Predictors of disease progression in HIV infection: A review, AIDS Res. Therapy, 4 (2007), 4-11.
doi: 10.1186/1742-6405-4-11.
|
[16]
|
C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math. Biosci., 181 (2003), 1-16.
doi: 10.1016/S0025-5564(02)00149-9.
|
[17]
|
P. T. Mouofo, J. J. Tewa, B. Mewoli and S. Bowong, Optimal control of a delayed system subject to mixed control-state constraints with application to a within-host model of hepatitis virus B, Annual Rev. Control, 37 (2013), 246-259.
doi: 10.1016/j.arcontrol.2013.09.004.
|
[18]
|
J. M. Murray, G. Kaufmann, A. D. Kelleher and D. A. Cooper, A model of primary HIV-1 infection, Math. Biosci., 154 (1998), 57-85.
doi: 10.1016/S0025-5564(98)10046-9.
|
[19]
|
P. W. Nelson, J. D. Murray and A. S. Perelson, A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci., 163 (2000), 201-215.
doi: 10.1016/S0025-5564(99)00055-3.
|
[20]
|
P. W. Nelson and A. S. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179 (2002), 73-94.
doi: 10.1016/S0025-5564(02)00099-8.
|
[21]
|
A. S Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time, Science, 271 (1996), 1582-1586.
doi: 10.1126/science.271.5255.1582.
|
[22]
|
D. Powell, J. Fair, R. J. Leclaire and L. M. Moore, Sensitivity analysis of an infectious disease model, International System Dynamics Conference, Boston, MA, 2005.
|
[23]
|
F. Rodrigues, C. J. Silva and D. F. M. Torres, Optimal control of a delayed HIV model, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 443-458.
doi: 10.3934/dcdsb.2018030.
|
[24]
|
H. S. Rodrigues, M. T. T. Monteiro and D. F. M. Torres, Sensitivity analysis in a dengue epidemiological model, Conference Papers in Mathematics, 2013 (2013), 7pp.
doi: 10.1155/2013/721406.
|
[25]
|
M. Shirazian and M. H. Farahi, Optimal control strategy for a fully determined HIV model, Intelligent Control Automation, 1 (2010), 15-19.
doi: 10.4236/ica.2010.11002.
|
[26]
|
R. A. Weiss, How does HIV cause AIDS?, Science, 260 (1993), 1273-1279.
doi: 10.1126/science.8493571.
|
[27]
|
C. G. Wermuth, The Practice of Medicinal Chemistry, Elsevier Science, 2003.
|