doi: 10.3934/dcdsb.2020039

Hexagonal spike clusters for some PDE's in 2D

1. 

Dalhousie University, Halifax, Canada

2. 

University of British Columbia, Vancouver, Canada

* Corresponding author: Juncheng Wei

Received  August 2019 Published  February 2020

Fund Project: The authors are supported by NSERC discovery grants

We study hexagonal spike cluster patterns for Gierer-Meinhardt reaction-diffusion system with a precursor on all of $ \mathbb R^2 $. These clusters consist of $ N $ spikes which form a nearly hexagonal lattice of a finite size. The lattice density is locally nearly constant, but globally non-uniform. We also characterize a similar hexagonal spike cluster steady state for a simple elliptic PDE $ 0 = \Delta u - u +u^2 + \varepsilon |x|^2 $ with a small "confinement well" $ \varepsilon |x|^2 $. The key idea is to explicitly exploit the local hexagonality structure to asymptotically approximate the solution using certain lattice sums. In the limit of many spikes, we derive the effective spike density as well as the cluster radius. This effective density is a solution to a certain separable first-order ODE coupled to an integral boundary condition.

Citation: Theodore Kolokolnikov, Juncheng Wei. Hexagonal spike clusters for some PDE's in 2D. Discrete & Continuous Dynamical Systems - B, doi: 10.3934/dcdsb.2020039
References:
[1]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[2]

Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014). doi: 10.1098/rsif.2013.1208.  Google Scholar

[3]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.  Google Scholar

[4]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.  doi: 10.1088/0951-7715/24/10/002.  Google Scholar

[5]

G. FlierlD. GrünbaumS. Levins and D. Olson, From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.  doi: 10.1006/jtbi.1998.0842.  Google Scholar

[6]

B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402.  Google Scholar

[7]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[8]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[10]

T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp. doi: 10.1098/rspa.2014.0048.  Google Scholar

[11]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.  Google Scholar

[12]

T. Kolokolnikov and M. J. Ward, Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.  doi: 10.1017/S0956792503005254.  Google Scholar

[13]

T. KolokolnikovM. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.  doi: 10.1007/s00332-008-9024-z.  Google Scholar

[14]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[15]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.   Google Scholar

[16]

W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[17]

M. J. WardD. McInerneyP. HoustonD. Gavaghan and P. Maini, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.  doi: 10.1137/S0036139900375112.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

[19]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[20]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[21]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[22]

J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp. doi: 10.1007/s00526-017-1233-6.  Google Scholar

[23]

S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp. doi: 10.1098/rspa.2017.0553.  Google Scholar

show all references

References:
[1]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[2]

Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014). doi: 10.1098/rsif.2013.1208.  Google Scholar

[3]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.  Google Scholar

[4]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.  doi: 10.1088/0951-7715/24/10/002.  Google Scholar

[5]

G. FlierlD. GrünbaumS. Levins and D. Olson, From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.  doi: 10.1006/jtbi.1998.0842.  Google Scholar

[6]

B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402.  Google Scholar

[7]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[8]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[10]

T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp. doi: 10.1098/rspa.2014.0048.  Google Scholar

[11]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.  Google Scholar

[12]

T. Kolokolnikov and M. J. Ward, Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.  doi: 10.1017/S0956792503005254.  Google Scholar

[13]

T. KolokolnikovM. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.  doi: 10.1007/s00332-008-9024-z.  Google Scholar

[14]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[15]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.   Google Scholar

[16]

W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[17]

M. J. WardD. McInerneyP. HoustonD. Gavaghan and P. Maini, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.  doi: 10.1137/S0036139900375112.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

[19]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[20]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[21]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[22]

J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp. doi: 10.1007/s00526-017-1233-6.  Google Scholar

[23]

S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp. doi: 10.1098/rspa.2017.0553.  Google Scholar

Figure 1.  Cluster steady-state solution to (1) consisting of 20 spikes. Contour plot of $ a $ and $ h $ are shown in (a) and (b) respectively. Parameter values are $ \varepsilon = 0.15 $ and $ \mu(x) = 1+0.02\left\vert x\right\vert ^{2}. $ Computational domain was taken to be $ x\in(-15,15)^{2} $; increasing the computational domain did not change spike locations. (c): Centers of spikes from the PDE simulation compared with centers generated by the reduced system (15). Dashed line denotes spike boundary computed asymptotically from (17). (d): Spike height $ h(x_{j}) $ versus $ \left\vert x_{j}\right\vert . $ Comparison between full numerical simulation, the reduced system (15) and theoretical prediction (17)
Figure 4.  LEFT: Steady state for (15) with $ N = 500, $ $ \mu(x) = 1+0.025x^{2} $ and $ \varepsilon = 0.08.\ $Dots represent the steady state $ x_{j}; $ their size and colour are proportional to $ H_{j}. $ Dashed line represents the theoretical boundary of the steady state in the continuum limit $ N\gg1. $ MIDDLE: scatter plot of the average distance $ u(x_{j}) $ from a point to any of its neighbours, as a function of $ \left\vert x_{j}\right\vert . $ Solid curve is the analytical prediction of the continuum limit as given by (17). RIGHT: Scatter plot of the $ H_{j} $ as a function of $ \left\vert x_{j}\right\vert $ and comparison to theory
Figure 2.  Left: steady state solution to the one-dimensional equation (5). Right: inter-spike spacing, comparison between asymptotics (10) and the steady state of (5) computed numerically. Parameters are $ a = 0.1 $ and $ N = 50$
Figure 3.  LEFT: steady state for (13) with $ N = 500 $ and $ a = 0.1. $ Dots represent the steady state $ x_{j}. $ Dashed line represents the theoretical boundary of the steady state in the continuum limit $ N\gg1. $ RIGHT: scatter plot of the average distance $ u(x_{j}) $ from a point to any of its neighbours, as a function of $ \left\vert x_{j}\right\vert . $ Solid curve is the analytical prediction of the continuum limit as given by equations (14)
Figure 5.  u and f
[1]

Joseph G. Yan, Dong-Ming Hwang. Pattern formation in reaction-diffusion systems with $D_2$-symmetric kinetics. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 255-270. doi: 10.3934/dcds.1996.2.255

[2]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[3]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[4]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[5]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[6]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[7]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[8]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[9]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[10]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[11]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[12]

Rui Li, Yuan Lou. Some monotone properties for solutions to a reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4445-4455. doi: 10.3934/dcdsb.2019126

[13]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[14]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[15]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[16]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[17]

Zhiting Xu, Yingying Zhao. A reaction-diffusion model of dengue transmission. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2993-3018. doi: 10.3934/dcdsb.2014.19.2993

[18]

Feng-Bin Wang. A periodic reaction-diffusion model with a quiescent stage. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 283-295. doi: 10.3934/dcdsb.2012.17.283

[19]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[20]

Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks & Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]