• Previous Article
    Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls
  • DCDS-B Home
  • This Issue
  • Next Article
    Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process
October  2020, 25(10): 4057-4070. doi: 10.3934/dcdsb.2020039

Hexagonal spike clusters for some PDE's in 2D

1. 

Dalhousie University, Halifax, Canada

2. 

University of British Columbia, Vancouver, Canada

* Corresponding author: Juncheng Wei

Received  August 2019 Published  February 2020

Fund Project: The authors are supported by NSERC discovery grants

We study hexagonal spike cluster patterns for Gierer-Meinhardt reaction-diffusion system with a precursor on all of $ \mathbb R^2 $. These clusters consist of $ N $ spikes which form a nearly hexagonal lattice of a finite size. The lattice density is locally nearly constant, but globally non-uniform. We also characterize a similar hexagonal spike cluster steady state for a simple elliptic PDE $ 0 = \Delta u - u +u^2 + \varepsilon |x|^2 $ with a small "confinement well" $ \varepsilon |x|^2 $. The key idea is to explicitly exploit the local hexagonality structure to asymptotically approximate the solution using certain lattice sums. In the limit of many spikes, we derive the effective spike density as well as the cluster radius. This effective density is a solution to a certain separable first-order ODE coupled to an integral boundary condition.

Citation: Theodore Kolokolnikov, Juncheng Wei. Hexagonal spike clusters for some PDE's in 2D. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 4057-4070. doi: 10.3934/dcdsb.2020039
References:
[1]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[2]

Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014). doi: 10.1098/rsif.2013.1208.  Google Scholar

[3]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.  Google Scholar

[4]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.  doi: 10.1088/0951-7715/24/10/002.  Google Scholar

[5]

G. FlierlD. GrünbaumS. Levins and D. Olson, From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.  doi: 10.1006/jtbi.1998.0842.  Google Scholar

[6]

B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402.  Google Scholar

[7]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[8]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[10]

T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp. doi: 10.1098/rspa.2014.0048.  Google Scholar

[11]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.  Google Scholar

[12]

T. Kolokolnikov and M. J. Ward, Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.  doi: 10.1017/S0956792503005254.  Google Scholar

[13]

T. KolokolnikovM. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.  doi: 10.1007/s00332-008-9024-z.  Google Scholar

[14]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[15]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.   Google Scholar

[16]

W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[17]

M. J. WardD. McInerneyP. HoustonD. Gavaghan and P. Maini, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.  doi: 10.1137/S0036139900375112.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

[19]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[20]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[21]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[22]

J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp. doi: 10.1007/s00526-017-1233-6.  Google Scholar

[23]

S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp. doi: 10.1098/rspa.2017.0553.  Google Scholar

show all references

References:
[1]

A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.  doi: 10.1137/130925669.  Google Scholar

[2]

Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014). doi: 10.1098/rsif.2013.1208.  Google Scholar

[3]

M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.104302.  Google Scholar

[4]

R. C. FetecauY. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.  doi: 10.1088/0951-7715/24/10/002.  Google Scholar

[5]

G. FlierlD. GrünbaumS. Levins and D. Olson, From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.  doi: 10.1006/jtbi.1998.0842.  Google Scholar

[6]

B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402.  Google Scholar

[7]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.  doi: 10.1007/BF00289234.  Google Scholar

[8]

C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.  doi: 10.1016/S0022-0396(99)80016-3.  Google Scholar

[9]

D. IronM. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.  doi: 10.1016/S0167-2789(00)00206-2.  Google Scholar

[10]

T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp. doi: 10.1098/rspa.2014.0048.  Google Scholar

[11]

T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.015203.  Google Scholar

[12]

T. Kolokolnikov and M. J. Ward, Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.  doi: 10.1017/S0956792503005254.  Google Scholar

[13]

T. KolokolnikovM. J. Ward and J. Wei, Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.  doi: 10.1007/s00332-008-9024-z.  Google Scholar

[14]

T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press. doi: 10.1016/j.physd.2019.132247.  Google Scholar

[15]

M. K. Kwong and L. Zhang, Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.   Google Scholar

[16]

W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.  doi: 10.1002/cpa.3160480704.  Google Scholar

[17]

M. J. WardD. McInerneyP. HoustonD. Gavaghan and P. Maini, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.  doi: 10.1137/S0036139900375112.  Google Scholar

[18]

J. Wei and M. Winter, Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.  doi: 10.1017/S0956792516000450.  Google Scholar

[19]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[20]

J. Wei and M. Winter, Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.  doi: 10.1006/jdeq.2001.4019.  Google Scholar

[21]

J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.  doi: 10.1016/j.matpur.2003.09.006.  Google Scholar

[22]

J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp. doi: 10.1007/s00526-017-1233-6.  Google Scholar

[23]

S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp. doi: 10.1098/rspa.2017.0553.  Google Scholar

Figure 1.  Cluster steady-state solution to (1) consisting of 20 spikes. Contour plot of $ a $ and $ h $ are shown in (a) and (b) respectively. Parameter values are $ \varepsilon = 0.15 $ and $ \mu(x) = 1+0.02\left\vert x\right\vert ^{2}. $ Computational domain was taken to be $ x\in(-15,15)^{2} $; increasing the computational domain did not change spike locations. (c): Centers of spikes from the PDE simulation compared with centers generated by the reduced system (15). Dashed line denotes spike boundary computed asymptotically from (17). (d): Spike height $ h(x_{j}) $ versus $ \left\vert x_{j}\right\vert . $ Comparison between full numerical simulation, the reduced system (15) and theoretical prediction (17)
Figure 4.  LEFT: Steady state for (15) with $ N = 500, $ $ \mu(x) = 1+0.025x^{2} $ and $ \varepsilon = 0.08.\ $Dots represent the steady state $ x_{j}; $ their size and colour are proportional to $ H_{j}. $ Dashed line represents the theoretical boundary of the steady state in the continuum limit $ N\gg1. $ MIDDLE: scatter plot of the average distance $ u(x_{j}) $ from a point to any of its neighbours, as a function of $ \left\vert x_{j}\right\vert . $ Solid curve is the analytical prediction of the continuum limit as given by (17). RIGHT: Scatter plot of the $ H_{j} $ as a function of $ \left\vert x_{j}\right\vert $ and comparison to theory
Figure 2.  Left: steady state solution to the one-dimensional equation (5). Right: inter-spike spacing, comparison between asymptotics (10) and the steady state of (5) computed numerically. Parameters are $ a = 0.1 $ and $ N = 50$
Figure 3.  LEFT: steady state for (13) with $ N = 500 $ and $ a = 0.1. $ Dots represent the steady state $ x_{j}. $ Dashed line represents the theoretical boundary of the steady state in the continuum limit $ N\gg1. $ RIGHT: scatter plot of the average distance $ u(x_{j}) $ from a point to any of its neighbours, as a function of $ \left\vert x_{j}\right\vert . $ Solid curve is the analytical prediction of the continuum limit as given by equations (14)
Figure 5.  u and f
[1]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[2]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[8]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[9]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[10]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[11]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[12]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[16]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[17]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[20]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (81)
  • HTML views (296)
  • Cited by (0)

Other articles
by authors

[Back to Top]