
-
Previous Article
Uniform stabilization of Boussinesq systems in critical $ \mathbf{L}^q $-based Sobolev and Besov spaces by finite dimensional interior localized feedback controls
- DCDS-B Home
- This Issue
-
Next Article
Ergodic boundary and point control for linear stochastic PDEs driven by a cylindrical Lévy process
Hexagonal spike clusters for some PDE's in 2D
1. | Dalhousie University, Halifax, Canada |
2. | University of British Columbia, Vancouver, Canada |
We study hexagonal spike cluster patterns for Gierer-Meinhardt reaction-diffusion system with a precursor on all of $ \mathbb R^2 $. These clusters consist of $ N $ spikes which form a nearly hexagonal lattice of a finite size. The lattice density is locally nearly constant, but globally non-uniform. We also characterize a similar hexagonal spike cluster steady state for a simple elliptic PDE $ 0 = \Delta u - u +u^2 + \varepsilon |x|^2 $ with a small "confinement well" $ \varepsilon |x|^2 $. The key idea is to explicitly exploit the local hexagonality structure to asymptotically approximate the solution using certain lattice sums. In the limit of many spikes, we derive the effective spike density as well as the cluster radius. This effective density is a solution to a certain separable first-order ODE coupled to an integral boundary condition.
References:
[1] |
A. J. Bernoff and C. M. Topaz,
Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.
doi: 10.1137/130925669. |
[2] |
Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014).
doi: 10.1098/rsif.2013.1208. |
[3] |
M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.104302. |
[4] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.
doi: 10.1088/0951-7715/24/10/002. |
[5] |
G. Flierl, D. Grünbaum, S. Levins and D. Olson,
From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.
doi: 10.1006/jtbi.1998.0842. |
[6] |
B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402. |
[7] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[8] |
C. Gui and J. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[9] |
D. Iron, M. J. Ward and J. Wei,
The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.
doi: 10.1016/S0167-2789(00)00206-2. |
[10] |
T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp.
doi: 10.1098/rspa.2014.0048. |
[11] |
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.015203. |
[12] |
T. Kolokolnikov and M. J. Ward,
Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.
doi: 10.1017/S0956792503005254. |
[13] |
T. Kolokolnikov, M. J. Ward and J. Wei,
Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.
doi: 10.1007/s00332-008-9024-z. |
[14] |
T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press.
doi: 10.1016/j.physd.2019.132247. |
[15] |
M. K. Kwong and L. Zhang,
Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.
|
[16] |
W.-M. Ni and J. Wei,
On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.
doi: 10.1002/cpa.3160480704. |
[17] |
M. J. Ward, D. McInerney, P. Houston, D. Gavaghan and P. Maini,
The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.
doi: 10.1137/S0036139900375112. |
[18] |
J. Wei and M. Winter,
Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.
doi: 10.1017/S0956792516000450. |
[19] |
J. Wei and M. Winter,
Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.
doi: 10.1007/s00285-007-0146-y. |
[20] |
J. Wei and M. Winter,
Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.
doi: 10.1006/jdeq.2001.4019. |
[21] |
J. Wei and M. Winter,
Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[22] |
J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp.
doi: 10.1007/s00526-017-1233-6. |
[23] |
S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp.
doi: 10.1098/rspa.2017.0553. |
show all references
References:
[1] |
A. J. Bernoff and C. M. Topaz,
Nonlocal aggregation models: A primer of swarm equilibria, SIAM Rev., 55 (2013), 709-747.
doi: 10.1137/130925669. |
[2] |
Y. Chen and T. Kolokolnikov, A minimal model of predator-swarm interactions, J. Royal Soc. Interface, 11 (2014).
doi: 10.1098/rsif.2013.1208. |
[3] |
M. R. D'Orsogna, Y.-L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett., 96 (2006).
doi: 10.1103/PhysRevLett.96.104302. |
[4] |
R. C. Fetecau, Y. Huang and T. Kolokolnikov,
Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, 24 (2011), 2681-2716.
doi: 10.1088/0951-7715/24/10/002. |
[5] |
G. Flierl, D. Grünbaum, S. Levins and D. Olson,
From individuals to aggregations: The interplay between behavior and physics, J. Theoret. Biol., 196 (1999), 397-454.
doi: 10.1006/jtbi.1998.0842. |
[6] |
B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in Mathematical Analysis and Applications, Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981,369-402. |
[7] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[8] |
C. Gui and J. Wei,
Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations, 158 (1999), 1-27.
doi: 10.1016/S0022-0396(99)80016-3. |
[9] |
D. Iron, M. J. Ward and J. Wei,
The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D, 150 (2001), 25-62.
doi: 10.1016/S0167-2789(00)00206-2. |
[10] |
T. Kolokolnikov, P. Kevrekidis and R. Carretero-González, A tale of two distributions: From few to many vortices in quasi-two-dimensional Bose-Einstein condensates, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 18pp.
doi: 10.1098/rspa.2014.0048. |
[11] |
T. Kolokolnikov, H. Sun, D. Uminsky and A. L. Bertozzi, Stability of ring patterns arising from two-dimensional particle interactions, Phys. Rev. E, 84 (2011).
doi: 10.1103/PhysRevE.84.015203. |
[12] |
T. Kolokolnikov and M. J. Ward,
Reduced wave Green's functions and their effect on the dynamics of a spike for the Gierer-Meinhardt model, European J. Appl. Math., 14 (2003), 513-545.
doi: 10.1017/S0956792503005254. |
[13] |
T. Kolokolnikov, M. J. Ward and J. Wei,
Spot self-replication and dynamics for the Schnakenburg model in a two-dimensional domain, J. Nonlinear Sci., 19 (2009), 1-56.
doi: 10.1007/s00332-008-9024-z. |
[14] |
T. Kolokolnikov and S. Xie, Spike density distribution for the Gierer-Meinhardt model with precursor, Phys. D, in press.
doi: 10.1016/j.physd.2019.132247. |
[15] |
M. K. Kwong and L. Zhang,
Uniqueness of the positive solution of $\delta u+f(u) = 0$ in an annulus, Differential Integral Equations, 4 (1991), 583-599.
|
[16] |
W.-M. Ni and J. Wei,
On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math., 48 (1995), 731-768.
doi: 10.1002/cpa.3160480704. |
[17] |
M. J. Ward, D. McInerney, P. Houston, D. Gavaghan and P. Maini,
The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328.
doi: 10.1137/S0036139900375112. |
[18] |
J. Wei and M. Winter,
Stable spike clusters for the one-dimensional Gierer-Meinhardt system, European J. Appl. Math., 28 (2017), 576-635.
doi: 10.1017/S0956792516000450. |
[19] |
J. Wei and M. Winter,
Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89.
doi: 10.1007/s00285-007-0146-y. |
[20] |
J. Wei and M. Winter,
Spikes for the Gierer-Meinhardt system in two dimensions: The strong coupling case, J. Differential Equations, 178 (2002), 478-518.
doi: 10.1006/jdeq.2001.4019. |
[21] |
J. Wei and M. Winter,
Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl., 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[22] |
J. Wei, M. Winter and W. Yang, Stable spike clusters for the precursor Gierer-Meinhardt system in $R^{2}$, Calc. Var. Partial Differential Equations, 56 (2017), 40pp.
doi: 10.1007/s00526-017-1233-6. |
[23] |
S. Xie, P. G. Kevrekidis and T. Kolokolnikov, Multi-vortex crystal lattices in Bose-Einstein condensates with a rotating trap, Proc. A, 474 (2018), 21pp.
doi: 10.1098/rspa.2017.0553. |





[1] |
Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170 |
[2] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[3] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[4] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[5] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[6] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
[7] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[8] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[9] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[10] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[11] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[12] |
Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162 |
[13] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[14] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[15] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
[16] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[17] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[18] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[19] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[20] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
2019 Impact Factor: 1.27
Tools
Article outline
Figures and Tables
[Back to Top]